Proofs for: Construction Principles for Well-behaved Scalable Systems

Peter Ochsenschläger and Roland Rieke Fraunhofer Institute for Secure Information Technology SIT, Rheinstrasse 75, Darmstadt, Germany Email: peter-ochsenschlaeger@t-online.de, roland.rieke@sit.fraunhofer.de

Theorem 1 (intersection theorem). Let \mathcal{I} be a parameter structure, $\mathcal{B}_{\mathcal{I}}$ an isomorphism structure for \mathcal{I} , and $T \neq \emptyset$.

- i) Let $(\mathcal{L}_{I}^{t})_{I \in \mathcal{I}}$ for each $t \in T$ be a monotonic parameterised system, then $(\bigcap_{t\in T} \mathcal{L}_I^t)_{I\in \mathcal{I}}$ is a monotonic parameterised system.
- ii) Let $(\mathcal{L}_{I}^{t})_{I \in \mathcal{I}}$ for each $t \in T$ be a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$, then $(\bigcap_{t\in T} \mathcal{L}_{I}^{t})_{I\in\mathcal{I}}$ is a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$.
- iii) Let $(\mathcal{L}_{I}^{t})_{I \in \mathcal{I}}$ for each $t \in T$ be a self-similar monotonic parameterised system, then $(\bigcap_{t\in T} \mathcal{L}_I^t)_{I\in \mathcal{I}}$ is a self-

similar monotonic parameterised system.

Proof of Theorem 1 (i)-(iii): *Proof of (i):* Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ a monotonic parameterised system for each $t \in T$, then $\mathcal{L}_{I'}^t \subset \mathcal{L}_I^t$ for $t \in T, I, I' \in \mathcal{I}$, and $I' \subset I$. This implies

$$\bigcap_{t\in T} \mathcal{L}_{I'}^t \subset \bigcap_{t\in T} \mathcal{L}_I^t$$

So, $(\bigcap_{t \in T} \mathcal{L}_I^t)_{I \in \mathcal{I}}$ is a monotonic parameterised system.

Proof of (ii): Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ an scalable system with respect to $(\mathcal{B}(I,K))_{(I,K)\in\mathcal{I}\times\mathcal{I}}$ for each $t\in T$, then $\iota_K^I(\mathcal{L}_I^t) =$ $\begin{aligned} \mathcal{L}_{K}^{t} \text{ for } t \in T, \ I, \ K \in \mathcal{I}, \text{ and } \iota \in \mathcal{B}(I,K). \\ \text{Because all } \iota_{K}^{I} \text{ are isomorphisms,} \end{aligned}$

$$\iota^I_K(\bigcap_{t\in T}\mathcal{L}^t_I) = \bigcap_{t\in T} \iota^I_K(\mathcal{L}^t_I) = \bigcap_{t\in T} \mathcal{L}^t_K.$$

Therefore, $(\bigcap_{t \in T} \mathcal{L}_I^t)_{I \in \mathcal{I}}$ is a scalable system

with respect to $(\mathcal{B}(I,K))_{(I,K)\in\mathcal{I}\times\mathcal{I}}$.

Proof of (iii): Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ a self-similar monotonic parameterised system for each $t \in T$. For $I, I' \in \mathcal{I}$ with $I' \subset I$ holds

$$\Pi^{I}_{I'}(\bigcap_{t\in T}\mathcal{L}^{t}_{I})\subset \bigcap_{t\in T}\Pi^{I}_{I'}(\mathcal{L}^{t}_{I}) = \bigcap_{t\in T}\mathcal{L}^{t}_{I'}\subset \bigcap_{t\in T}\mathcal{L}^{t}_{I}.$$
 (1)

Because $\bigcap_{t \in T} \mathcal{L}_{I'}^t \subset \Sigma_{I'}^*$ holds

$$\Pi^{I}_{I'}(\bigcap_{t\in T}\mathcal{L}^{t}_{I'}) = \bigcap_{t\in T}\mathcal{L}^{t}_{I'}.$$

Together with the second inclusion from (1) it follows

$$\bigcap_{t \in T} \mathcal{L}_{I'}^t \subset \Pi_{I'}^I (\bigcap_{t \in T} \mathcal{L}_I^t).$$

Because of the first part of (1) now holds

$$\Pi^{I}_{I'}(\bigcap_{t\in T}\mathcal{L}^{t}_{I}) = \bigcap_{t\in T}\mathcal{L}^{t}_{I'}.$$

Therefore,

$$(\bigcap_{t\in T}\mathcal{L}_{I}^{t})_{I\in\mathcal{I}}$$

is a self-similar monotonic parameterised system with respect to \mathcal{I} .

Theorem 2 (simplest well-behaved scalable systems). $(\mathcal{L}(L)_I)_{I \in \mathcal{I}}$ is a well-behaved scalable system with respect to each isomorphism structure for \mathcal{I} based on N and

$$\dot{\mathcal{L}}(L)_I = \bigcap_{i \in N} (\tau_i^I)^{-1}(L) \text{ for each } I \in \mathcal{I}.$$

The proof of Theorem 2 will be given in context of influence structures because it consists of special cases of more general results on influence structures (see 32).

requirements, Further which assure that $(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_I)_{I\in\mathcal{I}}$ are well-behaved scalable systems, will be given with respect to $\mathcal{E}_{\mathcal{I}}, \mathcal{B}_{\mathcal{I}}, L$ and V. This will be prepared by some lemmata.

Lemma 1. Let $\mathcal{E}_{\mathcal{I}} := (E(t,I))_{(t,I)\in T\times \mathcal{I}}$ be an influence structure for \mathcal{I} indexed by T, and let $V \subset \Sigma^*$. If

$$E(t, I') = E(t, I) \cap I' \tag{2}$$

for each $t \in T$ and $I, I' \in \mathcal{I}$ $I' \subset I$, then

$$((\tau_{E(t,I)})^{-1}(V))_{I \in \mathcal{I}}$$

is a monotonic parameterised system for each $t \in T$, and by the intersection theorem

$$(\bigcap_{t\in T} (\tau_{E(t,I)})^{-1}(V))_{I\in\mathcal{I}}$$

is a monotonic parameterised system.

Proof: Let $I \in \mathcal{I}$ and $t \in T$. From the definitions of influence homomorphisms and influence structures it follows

$$\tau_{E(t,I)}^{I}(a_{i}) = \begin{cases} a \mid & a_{i} \in \Sigma_{E(t,I)} \\ \varepsilon \mid & a_{i} \in \Sigma_{I} \setminus \Sigma_{E(t,I)} \end{cases} .$$
(3)

For $I' \subset I$, $I' \in \mathcal{I}$ and $a_i \in \Sigma_{I'}$ then because of (2)

$$\begin{aligned} \tau_{E(t,I)}^{I}(a_{i}) &= \begin{cases} a \mid & a_{i} \in \Sigma_{E(t,I)} \cap \Sigma_{I'} \\ \varepsilon \mid & a_{i} \in \Sigma_{I'} \cap \Sigma_{I} \setminus \Sigma_{E(t,I)} \end{cases} \\ &= \begin{cases} a \mid & a_{i} \in \Sigma_{E(t,I')} \\ \varepsilon \mid & a_{i} \in \Sigma_{I'} \setminus (\Sigma_{E(t,I)} \cap \Sigma_{I'}) \\ &= \begin{cases} a \mid & a_{i} \in \Sigma_{E(t,I')} \\ \varepsilon \mid & a_{i} \in \Sigma_{I'} \setminus \Sigma_{E(t,I')} \end{cases} = \tau_{E(t,I')}^{I'}(a_{i}), \end{aligned}$$

and therefore

$$(\tau_{E(t,I')}^{I'})^{-1}(V) \subset (\tau_{E(t,I)}^{I})^{-1}(V) \text{ for } V \subset \Sigma^*.$$
 (4)

So,

$$((\tau^{I}_{E(t,I)})^{-1}(V))_{I \in \mathcal{I}}$$
 (5)

is a monotonic parameterised system for each $t \in T$.

Example 1. Let \mathcal{I} be a parameter structure based on N. For $I \in \mathcal{I}$ and $i \in N$ let:

$$\dot{E}(i,I) := \begin{cases} \{i\} \mid & i \in I \\ \emptyset \mid & i \in N \setminus I \end{cases}$$

By the definition of parameter structure $N \neq \emptyset$. So

$$\mathcal{E}_{\mathcal{I}} := (E(i,I))_{(i,I) \in N \times \mathcal{I}}$$

defines an influence structure for \mathcal{I} indexed by N. $\dot{\mathcal{E}}_{\mathcal{I}}$ satisfies (2) and by $\tau_i^I = \tau_{\{i\}}^I \ \tau_i^I = \tau_{\dot{E}(i,I)}^I$ for $i \in N$ and $I \in \mathcal{I}$.

Now by Lemma 1 for $V \subset \Sigma^*$

 $((\tau_i^I)^{-1}(V))_{I \in \mathcal{I}}$ is a monotonic parameterised system (6)

for each $i \in N$.

For this special influence structure $\dot{\mathcal{E}}_{\mathcal{I}}$ a stronger result can be obtained.

Lemma 2. Let \mathcal{I} be a parameter structure based on N and $\varepsilon \in L \subset \Sigma^*$. Then

$$((\tau_i^I)^{-1}(L))_{I\in\mathcal{I}}$$

is a self-similar monotonic parameterised system for each $i \in N$, and by the intersection theorem

$$(\bigcap_{i\in N} (\tau_i^I)^{-1}(L))_{I\in\mathcal{I}}$$

is a self-similar monotonic parameterised system.

Proof: On account of (6)

$$\Pi^{I}_{I'}((\tau^{I}_{i})^{-1}(L)) = (\tau^{I'}_{i})^{-1}(L)$$

has to be shown for $I, I' \in \mathcal{I}, I' \subset I$, and $i \in N$.

(6) implies $(\tau_i^{I'})^{-1}(L) \subset (\tau_i^{I})^{-1}(L)$ and therefore,

$$(\tau_i^{I'})^{-1}(L) = \Pi_{I'}^{I}((\tau_i^{I'})^{-1}(L)) \subset \Pi_{I'}^{I}((\tau_i^{I})^{-1}(L)).$$
(7)

It remains to show $\Pi^{I}_{I'}((\tau^{I}_i)^{-1}(L)) \subset (\tau^{I'}_i)^{-1}(L)$. Case 1. $i \notin I'$

Because of $\varepsilon \in L$ and $\tau_i^{I'}(w) = \varepsilon$ for $i \notin I'$ and $w \in \Sigma_{I'}^*$ it holds $(\tau_i^{I'})^{-1}(L) = \Sigma_{I'}^*$ and so

$$\Pi^{I}_{I'}((\tau^{I}_{i})^{-1}(L)) \subset (\tau^{I'}_{i})^{-1}(L) \text{ for } i \notin I'.$$
(8)

Case 2. $i \in I'$

From definitions of $\Pi^{I}_{I'}, \tau^{I}_{i}$ and $\tau^{I'}_{i}$ follows

$$\tau_i^I = \tau_i^{I'} \circ \Pi_{I'}^I \text{ for } i \in I'.$$
(9)

For $x \in \Pi^{I}_{I'}((\tau^{I}_{i})^{-1}(L))$ exists $y \in \Sigma^{*}_{I}$ with $\tau^{I}_{i}(y) \in L$ and $x = \Pi^{I}_{I'}(y)$. Because of (9) holds

$$\tau_i^{I'}(x) = \tau_i^{I'}(\Pi_{I'}^I(y)) = \tau_i^I(y) \in L,$$

hence, $x \in (\tau_i^{I'})^{-1}(L)$. Therefore,

$$\Pi^{I}_{I'}((\tau^{I}_{i})^{-1}(L)) \subset (\tau^{I'}_{i})^{-1}(L) \text{ for } i \in I'.$$
(10)

Because of (8), (10) and (7) holds

$$\Pi^{I}_{I'}((\tau^{I}_{i})^{-1}(L)) = (\tau^{I'}_{i})^{-1}(L)$$

for $I, I' \in \mathcal{I}, I' \subset I$ and $i \in N$.

Intersections of system behaviours play an important role concerning uniformity of parameterisation. Therefore, some general properties of intersections of families of sets will be presented.

Let T be a set. A family $f = (f_t)_{t \in T}$ with $f_t \in F$ for each $t \in T$ is formally equivalent to a function $f: T \to F$ with $f_t := f(t)$.

Let M be a set. A family $f = (f_t)_{t \in T}$ with $f_t \in F = \mathcal{P}(M)$ for each $t \in T$ is called a family of subsets of M.

Let now $T \neq \emptyset$ and f a family of subsets of M. The intersection $\bigcap_{t \in T} f_t$ is defined by

$$\bigcap_{t \in T} f_t = \{ m \in M | m \in f_t \text{ for each } t \in T \}.$$
(11)

If $f = g \circ h$ with $h: T \to H$ and $g: H \to F$ then

$$\bigcap_{t \in T} f(t) = \bigcap_{x \in h(T)} g(x).$$
(12)

If especially f = h and g is the identity on F, then from (12) follows

$$\bigcap_{t \in T} f(t) = \bigcap_{x \in f(T)} x.$$

For a second family of sets $f': T' \to F$ with f'(T') = f(T) follows then

$$\bigcap_{t \in T} f(t) = \bigcap_{t' \in T'} f(t').$$

In the following we will use family and function notations side by side. Let $f = (f_t)_{t \in T}$ a family of sets with $f: T \to F = \mathcal{P}(M)$. If $T = \mathring{T} \cup \widehat{T}$ with $\mathring{T} \neq \emptyset$ and $f(\widehat{T}) = \{M\}$, then from (11) follows

$$\bigcap_{t \in T} f(t) = \bigcap_{t \in \mathring{T}} f(t).$$
(13)

Let $\mathcal{E}_{\mathcal{I}} = (E(t, I))_{(t,I) \in T \times \mathcal{I}}$ be an influence structure for \mathcal{I} indexed by T.

For each $I \in \mathcal{I}$ a family of sets

$$\mathcal{E}_{\mathcal{I}}(I) := (E(t,I))_{t \in T}$$

with $E(t, I) = \mathcal{E}_{\mathcal{I}}(I)(t) \in \mathcal{P}(I)$ is defined, and it holds

$$\mathcal{E}_{\mathcal{I}}(I): T \to \mathcal{P}(I). \tag{14}$$

From (12) it follows (with $h = \mathcal{E}_{\mathcal{I}}(I)$)

$$\bigcap_{t \in T} (\tau_{E(t,I)}^I)^{-1}(V) = \bigcap_{x \in \mathcal{E}_{\mathcal{I}}(I)(T)} (\tau_x^I)^{-1}(V) \qquad (15)$$

for each $V \subset \Sigma^*$ and $I \in \mathcal{I}$.

For each $I \in \mathcal{I}$ holds $\tau_{\emptyset}^{I}(w) = \varepsilon$ for each $w \in \Sigma_{I}^{*}$. It follows,

$$(\tau^I_{\emptyset})^{-1}(V) = \Sigma^*_I \text{ if } \varepsilon \in V \subset \Sigma^*.$$
(16)

Because of (12), (13), (15), and (16)

$$\bigcap_{t \in T} (\tau_{E(t,I)}^{I})^{-1}(V) = \bigcap_{x \in \mathcal{E}_{\mathcal{I}}(I)(T_{I})} (\tau_{x}^{I})^{-1}(V)$$
$$= \bigcap_{t \in T_{I}} (\tau_{E(t,I)}^{I})^{-1}(V)$$
(17)

for each T_I with $\emptyset \neq T_I \subset T$ and $\mathcal{E}_{\mathcal{I}}(I)(T) \setminus \mathcal{E}_{\mathcal{I}}(I)(T_I) \in \{\emptyset, \{\emptyset\}\}$ and $\varepsilon \in V \subset \Sigma^*$.

Each bijection $\iota:I\to I'$ defines another bijection $\check\iota:\mathcal{P}(I)\to\mathcal{P}(I')$ by

$$\check{\iota}(x) := \{\iota(y) \in I' | y \in x\} \text{ for each } x \in \mathcal{P}(I).$$
(18)

Lemma 3. Let $\mathcal{E}_{\mathcal{I}} = (E(t,I))_{(t,I)\in T\times\mathcal{I}}$ be an influence structure for \mathcal{I} indexed by T, and let $\mathcal{B}_{\mathcal{I}} = (\mathcal{B}(I,I'))_{(I,I')\in\mathcal{I}\times\mathcal{I}}$ be an isomorphism structure for \mathcal{I} . Let

$$\varepsilon \in V \subset \Sigma^*, \text{ and let } (T_K)_{K \in \mathcal{I}} \text{ be a family}$$
with $\emptyset \neq T_K \subset T$ and
$$\mathcal{E}_{\mathcal{I}}(K)(T) \setminus \mathcal{E}_{\mathcal{I}}(K)(T_K) \in \{\emptyset, \{\emptyset\}\} \text{ for each } K \in \mathcal{I},$$
such that $\check{\iota}(\mathcal{E}_{\mathcal{I}}(I)(T_I)) = \mathcal{E}_{\mathcal{I}}(I')(T_{I'})$
for each $(I, I') \in \mathcal{I} \times \mathcal{I}$ and $\iota \in \mathcal{B}(I, I'),$
(19)

then

$$\bigcap_{t \in T} (\tau_{E(t,I)}^{I})^{-1}(V) = \bigcap_{t \in T_{I}} (\tau_{E(t,I)}^{I})^{-1}(V)$$
(20)

for each $I \in \mathcal{I}$, and

$$\iota_{I'}^{I}[\bigcap_{t \in T} (\tau_{E(t,I)}^{I})^{-1}(V)] = \bigcap_{t \in T} (\tau_{E(t,I')}^{I'})^{-1}(V)$$
(21)

for each $(I, I') \in \mathcal{I} \times \mathcal{I}$ and $\iota \in \mathcal{B}(I, I')$.

Proof of (20): Because of (17) from assumption (19) directly follows (20). \blacksquare

For the proof of (21) the following property of the homomorphisms τ_K^I is needed:

Let $\iota:I\to I'$ a bijection and $K\subset I,$ then $\tau_{\iota(K)}^{I'}\circ\iota_{I'}^I=\tau_K^I$ and so

$$\tau_{\iota(K)}^{I'} = \tau_K^I \circ (\iota_{I'}^I)^{-1}.$$
 (22)

Proof of (22):

The elements of Σ_I are of the form a_i with $i \in I$ and $a \in \Sigma$. For these elements holds

$$\begin{aligned} \tau_K^I(a_i) &= \begin{cases} a \mid i \in K\\ \varepsilon \mid i \in I \setminus K \end{cases} \\ &= \begin{cases} a \mid \iota(i) \in \iota(K)\\ \varepsilon \mid \iota(i) \in I' \setminus \iota(K) \end{cases} \\ &= \tau_{\iota(K)}^{I'}(a_{\iota(i)}) = \tau_{\iota(K)}^{I'}(\iota_{I'}^I(a_i)) \end{aligned}$$

which proves (22).

Proof of (21): Because of (17) and (22)

From (12) (with $h = \check{\iota}$) and the assumption (19) follows

$$\bigcap_{x \in \mathcal{E}_{\mathcal{I}}(I)(T_I)} (\tau_{\widetilde{\iota}(x)}^{I'})^{-1}(V) = \bigcap_{x' \in \widetilde{\iota}(\mathcal{E}_{\mathcal{I}}(I)(T_I))} (\tau_{x'}^{I'})^{-1}(V)$$
$$= \bigcap_{x' \in \mathcal{E}_{\mathcal{I}}(I')(T_I')} (\tau_{x'}^{I'})^{-1}(V).$$

Furthermore, from (17) follows

$$\bigcap_{x' \in \mathcal{E}_{\mathcal{I}}(I')(T'_{I})} (\tau_{x'}^{I'})^{-1}(V) = \bigcap_{t \in T} (\tau_{E(t,I')}^{I'})^{-1}(V).$$
(24)

(23) - (24) prove (21).

The case T = N, where \mathcal{I} is based on N, allows a simpler sufficient condition for (20) and (21).

Lemma 4. Let \mathcal{I} be a parameter structure based on $N, \mathcal{E}_{\mathcal{I}} = (E(n,I))_{(n,I) \in N \times \mathcal{I}}$ be an influence structure for \mathcal{I} , and let $\mathcal{B}_{\mathcal{I}} = (\mathcal{B}(I,I'))_{(I,I') \in \mathcal{I} \times \mathcal{I}}$ be an isomorphism

structure for \mathcal{I} .

Let
$$\varepsilon \in V \subset \Sigma^*$$
, (25a)
for each $I \in \mathcal{I}$ and $n \in N$ let $E(n, I) = \emptyset$,
or it exists an $i_n \in I$ with $E(n, I) = E(i_n, I)$, and (25b)
for each $(I, I') \in \mathcal{I} \times \mathcal{I}, \iota \in \mathcal{B}(I, I')$ and $i \in I$ holds
 $\iota(E(i, I)) = E(\iota(i), I')$. (25c)

Then

$$\bigcap_{n \in N} (\tau^{I}_{E(n,I)})^{-1}(V) = \bigcap_{n \in I} (\tau^{I}_{E(n,I)})^{-1}(V) \qquad (26)$$

for each $I \in \mathcal{I}$, and

$$\iota_{I'}^{I}[\bigcap_{n\in N} (\tau_{E(n,I)}^{I})^{-1}(V)] = \bigcap_{n\in N} (\tau_{E(n,I')}^{I'})^{-1}(V) \qquad (27)$$

for each $(I, I') \in \mathcal{I} \times \mathcal{I}$ and $\iota \in \mathcal{B}(I, I')$.

Proof: From (25b) follows $\mathcal{E}_{\mathcal{I}}(I)(N) = \mathcal{E}_{\mathcal{I}}(I)(I)$ or $\mathcal{E}_{\mathcal{I}}(I)(N) = \mathcal{E}_{\mathcal{I}}(I)(I) \cup \{\emptyset\}$, so

$$\mathcal{E}_{\mathcal{I}}(I)(N) \setminus \mathcal{E}_{\mathcal{I}}(I)(I) \in \{\emptyset, \{\emptyset\}\} \text{ for each } I \in \mathcal{I}.$$
(28)

From (25c) follows

$$\check{\iota}(\mathcal{E}_{\mathcal{I}}(I)(I)) \subset \mathcal{E}_{\mathcal{I}}(I')(I').$$
(29)

Because $\iota: I \to I'$ is a bijection, for each $i' \in I'$ exists an $i \in I$ with $\iota(i) = i'$. Because of (25c) holds $\check{\iota}(E(i, I)) = E(i', I')$, where $E(i, I) \in \mathcal{E}_{\mathcal{I}}(I)(I)$. From this follows

$$\mathcal{E}_{\mathcal{I}}(I')(I') \subset \check{\iota}(\mathcal{E}_{\mathcal{I}}(I)(I)).$$
(30)

Because of (28) - (30), with T = N and $(T_I)_{I \in \mathcal{I}} = (I)_{I \in \mathcal{I}}$,

$$(25a) - (25c)$$
 implies (19) .

(32)

Example 2 (Example 1 (continued)). Let \mathcal{I} be a parameter structure based on N and $\mathcal{B}_{\mathcal{I}} = (\mathcal{B}(I, I'))_{(I, I') \in \mathcal{I} \times \mathcal{I}}$ be an isomorphism structure for \mathcal{I} . Then $\dot{\mathcal{E}}_{\mathcal{I}}$ satisfies (25b) and (25c).

So for $\varepsilon \in L \subset \Sigma^*$ Lemma 4 implies

$$\bigcap_{n \in N} (\tau_n^I)^{-1}(L) = \bigcap_{n \in I} (\tau_n^I)^{-1}(L) \text{ for each } I \in \mathcal{I} \text{ and}$$
$$\iota_{I'}^I[\bigcap_{n \in N} (\tau_n^I)^{-1}(L)] = \bigcap_{n \in N} (\tau_n^{I'})^{-1}(L)$$
(31)

for each $(I, I') \in \mathcal{I} \times \mathcal{I}$ and $\iota \in \mathcal{B}(I, I')$.

Now Lemma 2 together with (31) proves Theorem 2.

Because of $\tau_n^I = \tau_{\dot{E}(n,I)}^I$ for $I \in \mathcal{I}$ and $n \in N$, (31) and the definitions of $(\dot{\mathcal{L}}(L)_I)_{I \in \mathcal{I}}$ and $(\mathcal{L}(L, \mathcal{E}_{\mathcal{I}}, V)_I)_{I \in \mathcal{I}}$ imply

$$\dot{\mathcal{L}}(L)_{I} = \bigcap_{n \in I} (\tau_{n}^{I})^{-1}(L) = \bigcap_{n \in I} (\tau_{n}^{I})^{-1}(L) \cap \bigcap_{n \in I} (\tau_{n}^{I})^{-1}(V)$$

$$= \dot{\mathcal{L}}(L)_{I} \cap \bigcap_{n \in N} (\tau_{n}^{I})^{-1}(V)$$

$$= \dot{\mathcal{L}}(L)_{I} \cap \bigcap_{n \in N} (\tau_{\dot{E}(n,I)}^{I})^{-1}(V)$$

$$= \mathcal{L}(L, \dot{\mathcal{E}}_{I}, V)_{I}$$
(33)

for $I \in \mathcal{I}$ and $V \supset L$.

(33) gives a representation of $(\dot{\mathcal{L}}(L)_I)_{I \in \mathcal{I}}$ in terms of $(\mathcal{L}(L, \mathcal{E}_{\mathcal{I}}, V)_I)_{I \in \mathcal{I}}$.

For the following theorems please remember that by the general definition of $\mathcal{L}(L, \mathcal{E}_I, V)_I$ it is assumed that $\emptyset \neq L \subset V$ and L, V are prefix closed. This implies $\varepsilon \in L \subset V$.

Lemma 5. Let \mathcal{I} be a parameter structure, $\mathcal{E}_{\mathcal{I}}$ an influence structure for \mathcal{I} indexed by T and $\mathcal{B}_{\mathcal{I}}$ an isomorphism structure for \mathcal{I} .

Assuming (2) and (19), then

$$(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_I)_{I\in\mathcal{I}}$$

is a scalable systems with respect to $\mathcal{B}_{\mathcal{I}}$.

It holds
$$\mathcal{L}(L, \mathcal{E}_{\mathcal{I}}, V)_I = \dot{\mathcal{L}}(L)_I \cap \bigcap_{n \in T_I} (\tau^I_{E(n,I)})^{-1}(V)$$

for each $I \in \mathcal{I}$.

Proof: By Theorem 2, $(\mathcal{L}(L)_I)_{I \in \mathcal{I}}$ is a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$. By Lemma 1 and 3 (21)

$$(\bigcap_{t\in T} (\tau^I_{E(t,I)})^{-1}(V))_{I\in\mathcal{I}}$$

is a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$ too. Now part (ii) of the intersection theorem proves $(\mathcal{L}(L, \mathcal{E}_{\mathcal{I}}, V)_I)_{I \in \mathcal{I}}$ to be a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$. Lemma 3 (20) completes the proof of Lemma 5.

Using Lemma 4 instead of Lemma 3 proves the following.

Theorem 3 (construction condition for scalable systems). By the assumptions of Lemma 4 and (2) with T = N, $(\mathcal{L}(L, \mathcal{E}_{\mathcal{I}}, V)_I)_{I \in \mathcal{I}}$ is a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$. It holds $\mathcal{L}(L, \mathcal{E}_{\mathcal{I}}, V)_I = \dot{\mathcal{L}}(L)_I \cap \bigcap_{n \in I} (\tau^I_{E(n,I)})^{-1}(V))$.

Remark 1. It can be shown that in $\operatorname{SP}(L,V) \mathbb{N}$ can be replaced by each countable infinite set. Let therefore N' be another set and $\iota : \mathbb{N} \to N'$ a bijection. $\iota_{N'}^{\mathbb{N}} : \Sigma_{\mathbb{N}}^* \to \Sigma_{N'}^*$ is the isomorphism defined as in the definition of isomorphism structure. It now holds

$$\Theta^{\mathbb{N}} = \Theta^{N'} \circ \iota_{N'}^{\mathbb{N}} \text{ and } \tau_n^{\mathbb{N}} = \tau_{\iota(n)}^{N'} \circ \iota_{N'}^{\mathbb{N}}$$
(34)

for each $n \in \mathbb{N}$. Furthermore,

$$\iota_{N'}^{\mathbb{N}} \circ \Pi_{K}^{\mathbb{N}} = \Pi_{\iota(K)}^{N'} \circ \iota_{N'}^{\mathbb{N}} \tag{35}$$

for each $K \subset \mathbb{N}$. From (34) and commutativity of intersection now

$$(\bigcap_{n \in \mathbb{N}} (\tau_n^{\mathbb{N}})^{-1}(L)) \cap (\Theta^{\mathbb{N}})^{-1}(V) =$$

= $(\iota_{N'}^{\mathbb{N}})^{-1}[(\bigcap_{n \in \mathbb{N}} (\tau_{\iota(n)}^{N'})^{-1}(L)) \cap (\Theta^{N'})^{-1}(V)]$
= $(\iota_{N'}^{\mathbb{N}})^{-1}[(\bigcap_{n' \in N'} (\tau_{n'}^{N'})^{-1}(L)) \cap (\Theta^{N'})^{-1}(V)].$ (36)

By (35),

$$\Pi_K^{\mathbb{N}} \circ (\iota_{N'}^{\mathbb{N}})^{-1} = (\iota_{N'}^{\mathbb{N}})^{-1} \circ \Pi_{\iota(K)}^{N'}.$$
(37)

Because of (36) and (37)

$$\Pi_{K}^{\mathbb{N}}[(\bigcap_{n \in \mathbb{N}} (\tau_{n}^{\mathbb{N}})^{-1}(L)) \cap (\Theta^{\mathbb{N}})^{-1}(V)] = \\ = (\iota_{N'}^{\mathbb{N}})^{-1}(\Pi_{\iota(K)}^{N'}[(\bigcap_{n' \in N'} (\tau_{n'}^{N'})^{-1}(L)) \cap (\Theta^{N'})^{-1}(V)]).$$
(38)

From

$$\Pi^{\mathbb{N}}_{K}[(\bigcap_{n\in\mathbb{N}}(\tau_{n}^{\mathbb{N}})^{-1}(L))\cap(\Theta^{\mathbb{N}})^{-1}(V)]\subset(\Theta^{\mathbb{N}})^{-1}(V)$$

now follows

$$\Pi_{\iota(K)}^{N'}[(\bigcap_{n'\in N'} (\tau_{n'}^{N'})^{-1}(L)) \cap (\Theta^{N'})^{-1}(V)] \subset \iota_{N'}^{\mathbb{N}}((\Theta^{\mathbb{N}})^{-1}(V)).$$
(39)

Because of (34) $\Theta^{\mathbb{N}} \circ (\iota_{N'}^{\mathbb{N}})^{-1} = \Theta^{N'}$ and so

$$(\Theta^{N'})^{-1}(V) = \iota_{N'}^{\mathbb{N}}((\Theta^{\mathbb{N}})^{-1}(V)).$$

Therefore, from (39) follows

$$\Pi_{\iota(K)}^{N'}[(\bigcap_{n'\in N'}(\tau_{n'}^{N'})^{-1}(L))\cap(\Theta^{N'})^{-1}(V)]\subset(\Theta^{N'})^{-1}(V).$$
(40)

Because for each $\emptyset \neq K' \subset N'$ it exists an $\emptyset \neq K \subset \mathbb{N}$ with $K' = \iota(K)$, by $\operatorname{SP}(L, V)$, we get for each $\emptyset \neq K \subset \mathbb{N}$ a corresponding inclusion with N' replacing \mathbb{N} and K' for K.

Lemma 6. The assumptions of Lemma 1 and Lemma 2 together with SP(L,V) imply that $(X(L,V,t)_I)_{I \in \mathcal{I}}$ with

$$X(L,V,t)_I := \bigcap_{n \in N} (\tau_n^I)^{-1} (L) \cap (\tau_{E(t,I)}^I)^{-1} (V)$$

is a self-similar monotonic parameterised system for each $t \in T$.

$$X(L,V,t)_{I'} = \Pi^{I}_{I'}(X(L,V,t)_{I'}) \subset \Pi^{I}_{I'}(X(L,V,t)_{I})$$

for each $I, I' \in \mathcal{I}$ with $I' \subset I$. So the proof of self-similarity can be reduced to the proof of

$$\Pi^{I}_{I'}(X(L,V,t)_{I}) \subset X(L,V,t)_{I'}$$

$$\tag{41}$$

for each $t \in T$ and $I, I' \in \mathcal{I}$ with $I' \subset I$. Because by Lemma 2

$$(\bigcap_{n\in N} (\tau_n^I)^{-1}(L))_{I\in\mathcal{I}}$$

is self-similar, it holds

$$\Pi^{I}_{I'}(X(L,V,t)_{I}) \subset \Pi^{I}_{I'}(\bigcap_{n \in N} (\tau^{I}_{n})^{-1}(L)) = \bigcap_{n \in N} (\tau^{I}_{n})^{-1}(L).$$

So the proof of (41) can be reduced to the proof of

$$\Pi^{I}_{I'}[\bigcap_{n \in N} (\tau^{I}_{n})^{-1}(L) \cap (\tau^{I}_{E(t,I)})^{-1}(V)] \subset (\tau^{I'}_{E(t,I')})^{-1}(V)$$
(42)

for each $t \in T$ and $I, I' \in \mathcal{I}$ with $I' \subset I$. For each $w \in (\bigcap_{n \in N} (\tau_n^I)^{-1}(L)) \cap (\tau_{E(t,I)}^I)^{-1}(V)$ exists a $r \in \mathbb{N}$ and $u_i \in \Sigma_{E(t,I)}^*$ for $1 \leq i \leq r$ and $v_i \in \Sigma_{I \setminus E(t,I)}^*$ for $1 \leq i \leq r$ with $w = u_1 v_1 u_2 v_2 \dots u_r v_r$.

Note that $\Sigma_{\emptyset} := \emptyset$ and $\emptyset^* = \{\varepsilon\}$.

Because $u_1u_2...u_r \in \Sigma^*_{E(t,I)}$ and $v_1v_2...v_r \in \Sigma^*_{I \setminus E(t,I)}$ holds

$$\Theta^{N}(u_{1}u_{2}\dots u_{r}) = \tau^{I}_{E(t,I)}(u_{1}u_{2}\dots u_{r})$$
$$= \tau^{I}_{E(t,I)}(w) \in V.$$
(43)

With the same argumentation holds

$$\tau_n^N(u_1 u_2 \dots u_r) = \tau_n^I(u_1 u_2 \dots u_r) = \tau_n^I(w) \in L$$
 (44)

for $n \in E(t, I)$ and

$$\tau_n^N(u_1u_2\dots u_r) = \varepsilon \in L \tag{45}$$

for $n \in N \setminus E(t, I)$. With (43) - (45) now

$$u_1u_2\ldots u_r \in \left(\bigcap_{n\in N} (\tau_n^N)^{-1}(L)\right) \cap (\Theta^N)^{-1}(V),$$

and on behalf of precondition SP(L, V) holds

$$\Pi_{I'}^{N}(u_{1}u_{2}\dots u_{r}) = \Pi_{I'\cap E(t,I)}^{E(t,I)}(u_{1}u_{2}\dots u_{r})$$

$$\in \Sigma_{I'\cap E(t,I)}^{*}\cap (\Theta^{N})^{-1}(V).$$
(46)

Furthermore,

$$\Pi_{I'}^{I}(w) = \Pi_{I'}^{I}(u_{1}v_{1}u_{2}v_{2}\dots u_{r}v_{r})$$

= $\Pi_{I'\cap E(t,I)}^{E(t,I)}(u_{1})\Pi_{I'\setminus E(t,I)}^{I\setminus E(t,I)}(v_{1})\dots$
 $\Pi_{I'\cap E(t,I)}^{E(t,I)}(u_{r})\Pi_{I'\setminus E(t,I)}^{I\setminus E(t,I)}(v_{r}).$ (47)

Because of (2), $E(t,I') \subset E(t,I)$ and so $I' \setminus E(t,I) \subset I' \setminus E(t,I')$ and thus

$$\tau_{E(t,I')}^{I'}(\Pi_{I'\setminus E(t,I)}^{I\setminus E(t,I)})(v_i) = \varepsilon$$

for $1 \leq i \leq r$. With (2) and (47) it follows

$$\tau_{E(t,I')}^{I'}(\Pi_{I'}^{I}(w)) = \tau_{E(t,I')}^{I'}(\Pi_{E(t,I')}^{E(t,I)}(u_1\dots u_r)).$$
(48)

Because $\tau_{E(t,I')}^{I'}(x) = \Theta^N(x)$ for each $x \in \Sigma_{E(t,I')}^*$ now on behalf of (48), (2), and (46)

$$\tau_{E(t,I')}^{I'}(\Pi_{I'}^{I}(w)) = \Theta^{N}(\Pi_{E(t,I')}^{E(t,I)}(u_1 \dots u_r)) \in V,$$

and thus $\Pi_{I'}^{I}(w) \in (\tau_{E(t,I')}^{I'})^{-1}(V)$. This proves (42) and completes the proof of Lemma 6.

Because of the idempotence of intersection

$$\bigcap_{n \in N} (\tau_n^I)^{-1}(L) \cap \bigcap_{t \in T} (\tau_{E(t,I)}^I)^{-1}(V)$$

=
$$\bigcap_{t \in T} [\bigcap_{n \in N} (\tau_n^I)^{-1}(L) \cap (\tau_{E(t,I)}^I)^{-1}(V)]$$

Now the intersection theorem and Lemma 6 imply

Lemma 7. If SP(L,V), then by the assumptions of Lemma 1 and 2

$$[\bigcap_{n\in N} (\tau_n^I)^{-1}(L) \cap \bigcap_{t\in T} (\tau_{E(t,I)}^I)^{-1}(V)]_{I\in\mathcal{I}}$$

is a self-similar monotonic parameterised system.

Combining Lemma 7 with Lemma 5 or Theorem 3 imply

Theorem 4 (construction condition for well-behaved scalable systems). By the assumptions of Lemma 5 or Theorem 3 together with SP(L, V)

$$(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_I)_{I\in\mathcal{I}}$$

is a well-behaved scalable system.

Theorem 5 (inverse abstraction theorem). Let $\varphi : \Sigma^* \to \Phi^*$ be an alphabetic homomorphism and $W, X \subset \Phi^*$, then

$$SP(W,X)$$
 implies $SP(\varphi^{-1}(W),\varphi^{-1}(X))$.

Proof of Theorem 5:

Let K be a non-empty set. Each alphabetic homomorphism $\varphi: \Sigma^* \to \Phi^*$ defines a homomorphism $\varphi^K: \Sigma_K^* \to \Phi_K^*$ by

$$\varphi^{K}(a_{n}) := (\varphi(a))_{n} \text{ for } a_{n} \in \Sigma_{K}, \text{ where } (\varepsilon)_{n} = \varepsilon.$$
 (49)

If $\bar{\tau}_n^K : \Phi_K^* \to \Phi$ and $\bar{\Theta}^K : \Phi_K^* \to \Phi$ are defined analogous to τ_n^K and Θ^K , then

$$\varphi \circ \tau_n^K = \bar{\tau}_n^K \circ \varphi^K$$
, and $\varphi \circ \Theta^K = \bar{\Theta}^K \circ \varphi^K$. (50)

Let now N be an infinite countable set. Because of (50), for $W, X \subset \Phi^*$

$$(\bigcap_{n \in N} (\tau_n^N)^{-1} (\varphi^{-1}(W))) \cap (\Theta^N)^{-1} (\varphi^{-1}(X)) = (\varphi^N)^{-1} [(\bigcap_{n \in N} (\bar{\tau}_n^N)^{-1}(W)) \cap (\bar{\Theta}^N)^{-1}(X)].$$
(51)

Because of $\varphi^K(w)=\varphi^N(w)$ for $w\in \Sigma_K^*\subset \Sigma_N^*$ and $\emptyset\neq K\subset N$

$$(\varphi^K)^{-1}(Z) \subset (\varphi^N)^{-1}(Z) \text{ for } Z \subset \Phi_K^*.$$
 (52)

If now SP(W, X), and

$$\Pi_{K}^{N}[(\varphi^{N})^{-1}(Y)] = (\varphi^{K})^{-1}(\bar{\Pi}_{K}^{N}[Y])$$
(53)

for $Y \subset \Phi_N^*$ and $\emptyset \neq K \subset N$, where $\overline{\Pi}_K^N : \Phi_N^* \to \Phi_K^*$ is defined analogous to Π_K^N , then follows (with (50) - (53))

$$\Pi_{K}^{N}[(\bigcap_{n\in N} (\tau_{n}^{N})^{-1}(\varphi^{-1}(W))) \cap (\Theta^{N})^{-1}(\varphi^{-1}(X))]$$

$$= (\varphi^{K})^{-1}(\bar{\Pi}_{K}^{N}[(\bigcap_{n\in N} (\bar{\tau}_{n}^{N})^{-1}(W)) \cap (\bar{\Theta}^{N})^{-1}(X)])$$

$$\subset (\varphi^{K})^{-1}((\bar{\Theta}^{N})^{-1}(X)) \subset (\varphi^{N})^{-1}((\bar{\Theta}^{N})^{-1}(X))$$

$$= (\Theta^{N})^{-1}(\varphi^{-1}(X)).$$
(54)

With (54)

$$\operatorname{SP}(\varphi^{-1}(W), \varphi^{-1}(X))$$
 follows from $\operatorname{SP}(W, X)$, (55)

if (53) holds.

It remains to show (53). For the proof of (53) it is sufficient to prove

$$\Pi_{K}^{N}((\varphi^{N})^{-1}(y) = (\varphi^{K})^{-1}(\bar{\Pi}_{K}^{N}(y))$$
(56)

for each $y \in \Phi_N^*$, because of

1

$$\Pi^N_K((\varphi^N)^{-1}(Y) = \bigcup_{y \in Y} \Pi^N_K((\varphi^N)^{-1}(y))$$

and

$$(\varphi^K)^{-1}(\bar{\Pi}^N_K(Y)) = \bigcup_{y \in Y} (\varphi^K)^{-1}(\bar{\Pi}^N_K(y))$$

Here, for $f: A \to B$ and $b \in B$ we use the convention

$$f^{-1}(b) = f^{-1}(\{b\}).$$

With $Y = \{y\}$ (56) is also necessary for (53), and so it is equivalent to (53).

Definition 1 ((general) projection). For arbitrary alphabets Δ and Δ' with $\Delta' \subset \Delta$ general projections $\pi_{\Delta'}^{\Delta} : \Delta^* \to \Delta'^*$ are defined by

$$\pi_{\Delta'}^{\Delta}(a) := \begin{cases} a \mid & a \in \Delta' \\ \varepsilon \mid & a \in \Delta \setminus \Delta' \end{cases}$$
(57)

In this terminology the projections

$$\Pi_K^N : \Sigma_N^* \to \Sigma_K^* \text{ and } \bar{\Pi}_K^N : \Phi_N^* \to \Phi_K^*$$

considered until now are special cases, which we call *parameter-projections*. It holds

$$\Pi_K^N = \pi_{\Sigma_K}^{\Sigma_N} \text{ and } \bar{\Pi}_K^N = \pi_{\Phi_K}^{\Phi_N}.$$
(58)

Because of the different notations, in general we just use the term *projection* for both cases.

We now consider the equation (56) for the special case, where $\varphi : \Sigma^* \to \Phi^*$ is a projection, that is $\varphi = \pi_{\Phi}^{\Sigma}$ with $\Phi \subset \Sigma$. In this case also $\varphi^N : \Sigma_N^* \to \Phi_N^*$ is a projection, with

$$\varphi^N = \pi_{\Phi_N}^{\Sigma_N}.$$
 (59)

Lemma 8 (projection-lemma).

Let Δ be an alphabet, $\Delta' \subset \Delta$, $\Gamma \subset \Delta$ and $\Gamma' = \Delta' \cap \Gamma$, then

$$\pi_{\Delta'}^{\Delta}((\pi_{\Gamma}^{\Delta})^{-1}(y)) = (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))$$

for each $y \in \Gamma^*$.

Proof: Let $y \in \Gamma^*$. We show

$$\pi_{\Gamma'}^{\Delta'}(\pi_{\Delta'}^{\Delta}(z)) = \pi_{\Delta'}^{\Delta}(y) \text{ for each } z \in (\pi_{\Gamma}^{\Delta})^{-1}(y)$$
(60)

and we show that

for each
$$u \in (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))$$
 there exists a $v \in (\pi_{\Gamma}^{\Delta})^{-1}(y)$ such that $\pi_{\Delta'}^{\Delta}(v) = u.$ (61)

From (60) it follows that

$$\pi_{\Delta'}^{\Delta}((\pi_{\Gamma}^{\Delta})^{-1}(y)) \subset (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))$$

and from (61) it follows that

$$(\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y)) \subset \pi_{\Delta'}^{\Delta}((\pi_{\Gamma}^{\Delta})^{-1}(y)),$$

which in turn proves Lemma 8.

Proof of (60): By definition of π_{Γ}^{Δ} , $\pi_{\Gamma'}^{\Delta'}$ and $\pi_{\Delta'}^{\Delta}$ follows

$$\pi_{\Gamma'}^{\Delta'}(\pi_{\Delta'}^{\Delta}(z)) = \pi_{\Delta'}^{\Delta}(\pi_{\Gamma}^{\Delta}(z))$$

for each $z \in \Delta^*$ and therewith (60).

Proof of (61) by induction on $y \in \Gamma^*$:

Induction base. Let $y = \varepsilon$, then $u \in (\Delta' \setminus \Gamma')^*$ for each $u \in$ $(\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))$. From this follows

$$\pi_{\Delta'}^{\Delta}(v) = u \text{ with } v := u \in (\pi_{\Gamma}^{\Delta})^{-1}(\varepsilon).$$

Induction step. Let $y = \hat{y}\hat{y}$ with $\hat{y} \in \Gamma^*$ and $\hat{y} \in \Gamma$. Case 1: $\hat{y} \in \Gamma \setminus \Gamma' = \Gamma \cap (\Delta \setminus \Delta')$ Then

$$(\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y)) = (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(\mathring{y})).$$

By induction hypothesis then for each $u \in (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))$ it exists $\mathring{v} \in (\pi_{\Gamma}^{\Delta})^{-1}(\mathring{y})$ such that $\pi_{\Delta'}^{\Delta}(\mathring{v}) = u$. With $v := \mathring{v}\widehat{y}$ holds $\pi_{\Gamma}^{\Delta}(\mathring{v}\widehat{y}) = \mathring{y}\widehat{y} = y$ and hence

$$v \in (\pi_{\Gamma}^{\Delta})^{-1}(y)$$
 and $\pi_{\Delta'}^{\Delta}(v) = \pi_{\Delta'}^{\Delta}(\mathring{v}) = u$

Case 2: $\hat{y} \in \Gamma' \subset \Delta'$ Then $\pi_{\Delta'}^{\Delta}(y) = \pi_{\Delta'}^{\Delta}(\hat{y})\hat{y}$. Therefore, each $u \in (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))$ can be departed into $u = \mathring{u}\hat{y}\hat{u}$ with $\dot{u} \in (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(\dot{y})) \text{ and } \hat{u} \in (\Delta' \setminus \Gamma')^*.$

By induction hypothesis then exists $\hat{v} \in (\pi_{\Gamma}^{\Delta})^{-1}(\hat{y})$ such that $\pi_{\Delta'}^{\Delta}(\mathring{v}) = \mathring{u}.$

With $v := \dot{v}\hat{y}\hat{u}$ holds $\pi_{\Gamma}^{\Delta}(\dot{v}\hat{y}\hat{u}) = \dot{y}\hat{y} = y$ and hence

$$v \in (\pi_{\Gamma}^{\Delta})^{-1}(y)$$
 and $\pi_{\Delta'}^{\Delta}(v) = \pi_{\Delta'}^{\Delta}(\hat{v})\hat{y}\hat{u} = \hat{u}\hat{y}\hat{u} = u$

This completes the proof of (61).

For $y \in \Gamma^*$ holds

$$\pi_{\Delta'}^{\Delta}(y) = \pi_{\Delta' \cap \Gamma}^{\Gamma}(y) = \pi_{\Gamma'}^{\Gamma}(y).$$

Therewith, from Lemma 8 follows

$$\pi_{\Delta'}^{\Delta}((\pi_{\Gamma}^{\Delta})^{-1}(y)) = (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Gamma'}^{\Gamma}(y)) \text{ for each } y \in \Gamma^*.$$
 (62)

For $\emptyset \neq K \subset N, \Phi \subset \Sigma, \Delta := \Sigma_N, \Delta' := \Sigma_K$, and $\Gamma := \Phi_N$ holds $\Gamma' = \Delta' \cap \Gamma = \Phi_K$.

Assuming $\varphi = \pi_{\Phi}^{\Sigma}$, which implies $\varphi^{K} = \pi_{\Phi_{K}}^{\Sigma_{K}}$, then from (62) (with (58) and (59)), follows

$$\Pi^N_K((\varphi^N)^{-1}(y)) = (\varphi^K)^{-1}(\bar{\Pi}^N_K(y))$$

for $y \in \Phi_N^*$, and so (56). With this,

premise (53) is fulfilled for (55), when φ is a projection, (63)

which proves Theorem 5 for projections.

Definition 2 (strict alphabetic homomorphism). Let Σ , Φ alphabets, and $\varphi: \Sigma^* \to \Phi^*$ a homomorphism. Then φ is called alphabetic, if $\varphi(\Sigma) \subset \Phi \cup \{\varepsilon\}$, and φ is called strict alphabetic, if $\varphi(\Sigma) \subset \Phi$.

Each alphabetic homomorphism $\varphi: \Sigma^* \to \Phi^*$ is the composition of a projection with a strict alphabetic homomorphism, more precisely,

$$\varphi = \varphi_S \circ \pi_{\varphi^{-1}(\Phi) \cap \Sigma}^{\Sigma}, \tag{64}$$

where $\varphi_S : (\varphi^{-1}(\Phi) \cap \Sigma)^* \to \Phi^*$ is the strict alphabetic homomorphism defined by

$$\varphi_S(a) := \varphi(a) \text{ for } a \in \varphi^{-1}(\Phi) \cap \Sigma.$$

For $W, X \subset \Phi^*$ and $\varphi: \Sigma^* \to \Phi^*$ alphabetic (64) implies

$$\varphi^{-1}(W) = (\pi_{\varphi^{-1}(\Phi)\cap\Sigma}^{\Sigma})^{-1}((\varphi_S)^{-1}(W)) \text{ and}$$

$$\varphi^{-1}(X) = (\pi_{\varphi^{-1}(\Phi)\cap\Sigma}^{\Sigma})^{-1}((\varphi_S)^{-1}(X)).$$
(65)

Now with (63) and (65) it remains to prove Theorem 5 for strict alphabetic homomorphisms. This will be done by Lemma 9, which proves (56) for strict alphabetic homomorphisms.

Lemma 9. Let $\varphi: \Sigma^* \to \Phi^*$ be a strict alphabetic homomorphism, then for all $y \in \Phi_N^*$ and $\emptyset \neq K \subset N$ holds

$$\Pi_{K}^{N}((\varphi^{N})^{-1}(y)) = (\varphi^{K})^{-1}(\bar{\Pi}_{K}^{N}(y)).$$

Proof: Proof by induction on y.

Induction basis: $y = \varepsilon$ Because φ^N is strict alphabetic

$$(\varphi^N)^{-1}(\varepsilon) = \{\varepsilon\} \text{ and so } \Pi^N_K((\varphi^N)^{-1}(\varepsilon)) = \{\varepsilon\}.$$

For the same reason

$$(\varphi^K)^{-1}(\bar{\Pi}_K^N(\varepsilon)) = (\varphi^K)^{-1}(\varepsilon) = \{\varepsilon\}.$$

Induction step: Let $y = y'a_t$ with $a_t \in \Phi_N$, where $a \in \Phi$ and $t \in N$. Because φ^N is alphabetic, it holds

$$(\varphi^N)^{-1}(y'a_t) = ((\varphi^N)^{-1}(y'))((\varphi^N)^{-1}(a_t)),$$

and so

$$\Pi_{K}^{N}((\varphi^{N})^{-1}(y'a_{t})) = \Pi_{K}^{N}((\varphi^{N})^{-1}(y'))\Pi_{K}^{N}((\varphi^{N})^{-1}(a_{t}))$$

Also holds

$$(\varphi^K)^{-1}(\bar{\Pi}^N_K(y'a_t)) = (\varphi^K)^{-1}(\bar{\Pi}^N_K(y'))(\varphi^K)^{-1}(\bar{\Pi}^N_K(a_t)).$$

According to the induction hypothesis, it holds

$$\Pi^N_K((\varphi^N)^{-1}(y')) = (\varphi^K)^{-1}(\bar{\Pi}^N_K(y')).$$

Therefore, it remains to show

$$\Pi_{K}^{N}((\varphi^{N})^{-1}(a_{t})) = (\varphi^{K})^{-1}(\bar{\Pi}_{K}^{N}(a_{t})).$$

Case 1: $t \notin K$ Because φ^N is strict alphabetic, it holds $(\varphi^N)^{-1}(a_t) \subset \Sigma_t$, \mathbf{so}

$$\Pi_K^N((\varphi^N)^{-1}(a_t)) = \{\varepsilon\}.$$

Additionally holds $\bar{\Pi}_{K}^{N}(a_{t}) = \varepsilon$, and there with

$$(\varphi^K)^{-1}(\bar{\Pi}^N_K(a_t)) = \{\varepsilon\},\$$

because φ^K is strict alphabetic.

Case 2: $t \in K$ Because φ^N is strict alphabetic, it holds

$$(\varphi^N)^{-1}(a_t) = \{b_t \in \Sigma_t | \varphi(b) = a\},\$$

and therewith

$$\Pi^N_K((\varphi^N)^{-1}(a_t)) = \{b_t \in \Sigma_t | \varphi(b) = a\}.$$

 $\bar{\Pi}_{K}^{N}(a_{t}) = a_{t}$ and there with

$$(\varphi^K)^{-1}(\bar{\Pi}^N_K(a_t)) = \{b_t \in \Sigma_t | \varphi(b) = a\},\$$

because φ^K is strict alphabetic. This completes the proof of Lemma 9.

This completes the proof of Theorem 5.