Proofs for: Construction Principles for Well-behaved Scalable Systems

Peter Ochsenschläger and Roland Rieke Fraunhofer Institute for Secure Information Technology SIT, Rheinstrasse 75, Darmstadt, Germany Email: peter-ochsenschlaeger@t-online.de, roland.rieke@sit.fraunhofer.de

Theorem 1 (intersection theorem)**.** *Let* I *be a parameter structure,* $\mathcal{B}_{\mathcal{I}}$ *an isomorphism structure for* \mathcal{I} *, and* $T \neq \emptyset$ *.*

- *i)* Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ for each $t \in T$ be a monotonic parame*terised system, then* $\left(\bigcap$ *t*∈*T* $\mathcal{L}_I^t)_{I \in \mathcal{I}}$ *is a monotonic parameterised system.*
- *ii)* Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ for each $t \in T$ be a scalable system with *respect to* $\mathcal{B}_{\mathcal{I}}$ *, then* (\bigcap *t*∈*T* $\mathcal{L}_{I}^{t})_{I\in\mathcal{I}}$ *is a scalable system* $with\,\,respect\,\,to\,\mathcal{B}_{\mathcal{I}}.$
- *iii*) *Let* $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ *for each* $t \in T$ *be a self-similar monotonic parameterised system, then* (∩ *t*∈*T* $\mathcal{L}_I^t)_{I \in \mathcal{I}}$ *is a selfsimilar monotonic parameterised system.*

Proof of Theorem [1](#page-0-0) (i)–(iii): Proof of (i): Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ a monotonic parameterised system for each $t \in T$, then $\mathcal{L}_{I'}^t \subset \mathcal{L}_I^t$ for $t \in T$, $I, I' \in \mathcal{I}$, and $I' \subset I$. This implies

$$
\bigcap_{t\in T} \mathcal{L}^t_{I'} \subset \bigcap_{t\in T} \mathcal{L}^t_{I}.
$$

So, $(\bigcap$ *t*∈*T* \mathcal{L}_{I}^{t}) $_{I \in \mathcal{I}}$ is a monotonic parameterised system.

Proof of (ii): Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ an scalable system with respect to $(\mathcal{B}(I,K))_{(I,K)\in\mathcal{I}\times\mathcal{I}}$ for each $t \in T$, then $\iota_K^I(\mathcal{L}_I^t)$ = \mathcal{L}_K^t for $t \in T$, $I, K \in \mathcal{I}$, and $\iota \in \mathcal{B}(I, K)$.

Because all ι_K^I are isomorphisms,

$$
\iota_K^I(\bigcap_{t\in T}\mathcal{L}_I^t)=\bigcap_{t\in T}\iota_K^I(\mathcal{L}_I^t)=\bigcap_{t\in T}\mathcal{L}_K^t.
$$

Therefore, $(\bigcap$ *t*∈*T* \mathcal{L}_{I}^{t}) $_{I\in\mathcal{I}}$ is a scalable system

with respect to $(\mathcal{B}(I,K))_{(I,K)\in\mathcal{I}\times\mathcal{I}}$.

Proof of (iii): Let $(\mathcal{L}_I^t)_{I \in \mathcal{I}}$ a self-similar monotonic parameterised system for each $t \in T$. For $I, I' \in \mathcal{I}$ with $I' \subset I$ holds

$$
\Pi_{I'}^I(\bigcap_{t \in T} \mathcal{L}_I^t) \subset \bigcap_{t \in T} \Pi_{I'}^I(\mathcal{L}_I^t) = \bigcap_{t \in T} \mathcal{L}_{I'}^t \subset \bigcap_{t \in T} \mathcal{L}_I^t. \tag{1}
$$

Because \bigcap *t*∈*T* $\mathcal{L}_{I'}^{t} \subset \Sigma_{I'}^{*}$ holds

$$
\Pi^I_{I'}(\bigcap_{t\in T}\mathcal{L}^t_{I'})=\bigcap_{t\in T}\mathcal{L}^t_{I'}.
$$

Together with the second inclusion from [\(1\)](#page-0-1) it follows

$$
\bigcap_{t\in T} \mathcal{L}^t_{I'} \subset \Pi^I_{I'}(\bigcap_{t\in T} \mathcal{L}^t_{I}).
$$

Because of the first part of (1) now holds

$$
\Pi^I_{I'}(\bigcap_{t \in T} \mathcal{L}^t_I) = \bigcap_{t \in T} \mathcal{L}^t_{I'}.
$$

Therefore,

$$
(\bigcap_{t\in T} \mathcal{L}_I^t)_{I\in\mathcal{I}}
$$

is a self-similar monotonic parameterised system with respect to $\mathcal{I}.$

Theorem 2 (simplest well-behaved scalable systems)**.** $(L(L)_I)_{I \in \mathcal{I}}$ *is a well-behaved scalable system with respect to each isomorphism structure for* I *based on N and*

$$
\dot{\mathcal{L}}(L)_I = \bigcap_{i \in N} (\tau_i^I)^{-1}(L) \text{ for each } I \in \mathcal{I}.
$$

The proof of Theorem [2](#page-0-2) will be given in context of influence structures because it consists of special cases of more general results on influence structures (see 32).

Further requirements, which assure that $(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_I)_{I\in\mathcal{I}}$ are well-behaved scalable systems, will be given with respect to $\mathcal{E}_{\mathcal{I}}, \mathcal{B}_{\mathcal{I}}, L$ and *V*. This will be prepared by some lemmata.

Lemma 1. *Let* $\mathcal{E}_{\mathcal{I}} := (E(t, I))_{(t, I) \in T \times \mathcal{I}}$ *be an influence structure for* $\mathcal I$ *indexed by* T *, and let* $V \subset \Sigma^*$ *. If*

$$
E(t, I') = E(t, I) \cap I'
$$
\n(2)

for each $t \in T$ *and* $I, I' \in \mathcal{I}$ $I' \subset I$ *, then*

$$
((\tau_{E(t,I)})^{-1}(V))_{I\in\mathcal{I}}
$$

is a monotonic parameterised system for each $t \in T$ *, and by the intersection theorem*

$$
(\bigcap_{t \in T} (\tau_{E(t,I)})^{-1}(V))_{I \in \mathcal{I}}
$$

is a monotonic parameterised system.

Proof: Let $I \in \mathcal{I}$ and $t \in T$. From the definitions of influence homomorphisms and influence structures it follows

$$
\tau_{E(t,I)}^I(a_i) = \begin{cases} a \mid & a_i \in \Sigma_{E(t,I)} \\ \varepsilon \mid & a_i \in \Sigma_I \setminus \Sigma_{E(t,I)} \end{cases} . \tag{3}
$$

For $I' \subset I$, $I' \in \mathcal{I}$ and $a_i \in \Sigma_{I'}$ then because of [\(2\)](#page-0-3)

$$
\tau_{E(t,I)}^I(a_i) = \begin{cases}\n a \mid & a_i \in \Sigma_{E(t,I)} \cap \Sigma_{I'} \\
\varepsilon \mid & a_i \in \Sigma_{I'} \cap \Sigma_I \setminus \Sigma_{E(t,I)}\n\end{cases}
$$
\n
$$
= \begin{cases}\n a \mid & a_i \in \Sigma_{E(t,I')} \\
\varepsilon \mid & a_i \in \Sigma_{I'} \setminus (\Sigma_{E(t,I)} \cap \Sigma_{I'})\n\end{cases}
$$
\n
$$
= \begin{cases}\n a \mid & a_i \in \Sigma_{E(t,I')} \\
\varepsilon \mid & a_i \in \Sigma_{I'} \setminus \Sigma_{E(t,I')} = \tau_{E(t,I')}^I(a_i),\n\end{cases}
$$

and therefore

$$
(\tau_{E(t,I')}^{I'})^{-1}(V) \subset (\tau_{E(t,I)}^{I})^{-1}(V) \text{ for } V \subset \Sigma^*.
$$
 (4)

So,

$$
((\tau_{E(t,I)}^I)^{-1}(V))_{I\in\mathcal{I}}\tag{5}
$$

.

is a monotonic parameterised system for each $t \in T$.

Example 1. *Let* I *be a parameter structure based on N. For* $I \in \mathcal{I}$ *and* $i \in N$ *let:*

$$
\dot{E}(i,I) := \left\{ \begin{array}{c} \{i\} \mid & i \in I \\ \emptyset \mid & i \in N \setminus I \end{array} \right.
$$

By the definition of parameter structure $N \neq \emptyset$ *. So*

$$
\dot{\mathcal{E}}_{\mathcal{I}} := (\dot{E}(i,I))_{(i,I) \in N \times \mathcal{I}}
$$

defines an influence structure for I *indexed by* N *.* $\dot{\mathcal{E}}_I$ *satisfies* [\(2\)](#page-0-3) *and by* $\tau_i^I = \tau_{\{i\}}^I$ $\tau_i^I = \tau_{\dot{E}(i,I)}^I$ for $i \in N$ *and* $I \in \mathcal{I}$ *.*

Now by Lemma [1](#page-0-4) for $V \subset \Sigma^*$

 $((\tau_i^I)^{-1}(V))_{I \in \mathcal{I}}$ *is a monotonic parameterised system* (6)

for each $i \in N$ *.*

For this special influence structure $\dot{\mathcal{E}}_{\mathcal{I}}$ a stronger result can be obtained.

Lemma 2. *Let* I *be a parameter structure based on N and ε* ∈ *L* ⊂ Σ ∗ *. Then*

$$
((\tau_i^I)^{-1}(L))_{I\in\mathcal{I}}
$$

is a self-similar monotonic parameterised system for each $i \in N$ *, and by the intersection theorem*

$$
(\bigcap_{i\in N}(\tau_i^I)^{-1}(L))_{I\in\mathcal{I}}
$$

is a self-similar monotonic parameterised system.

Proof: On account of [\(6\)](#page-1-0)

$$
\Pi^I_{I'}((\tau^I_i)^{-1}(L)) = (\tau^{I'}_i)^{-1}(L)
$$

has to be shown for $I, I' \in \mathcal{I}, I' \subset I$, and $i \in N$.

[\(6\)](#page-1-0) implies $(\tau_i^{I'})$ $\binom{I'}{i}$ ⁻¹(*L*) $\subset (\tau_i^I)^{-1}(L)$ and therefore,

$$
(\tau_i^{I'})^{-1}(L) = \Pi_{I'}^I((\tau_i^{I'})^{-1}(L)) \subset \Pi_{I'}^I((\tau_i^I)^{-1}(L)).
$$
 (7)

It remains to show $\Pi^I_{I'}((\tau^I_i)^{-1}(L)) \subset (\tau^{I'}_i)$ $_{i}^{I'})^{-1}(L).$ Case 1. $i \notin I'$

Because of $\varepsilon \in L$ and $\tau_i^{I'}$ $i^{I'}(w) = \varepsilon$ for $i \notin I'$ and $w \in \Sigma_{I'}^{*}$ it holds $(\tau_i^{I'}$ $(L^{I'})^{-1}(L) = \sum_{I'}^{*}$ and so

$$
\Pi_{I'}^I((\tau_i^I)^{-1}(L)) \subset (\tau_i^{I'})^{-1}(L) \text{ for } i \notin I'. \tag{8}
$$

Case 2. $i \in I'$

From definitions of $\Pi^I_{I'}, \tau^I_i$ and $\tau^{I'}_i$ *i* follows

$$
\tau_i^I = \tau_i^{I'} \circ \Pi_{I'}^I \text{ for } i \in I'. \tag{9}
$$

For $x \in \Pi^I_{I'}((\tau^I_i)^{-1}(L))$ exists $y \in \Sigma_I^*$ with $\tau^I_i(y) \in L$ and $x = \prod_{I}^{I}(y)$. Because of [\(9\)](#page-1-1) holds

$$
\tau_i^{I'}(x) = \tau_i^{I'}(\Pi_{I'}^I(y)) = \tau_i^I(y) \in L,
$$

hence, $x \in (\tau_i^{I'}$ $\binom{I'}{i}$ ⁻¹(*L*). Therefore,

$$
\Pi_{I'}^I((\tau_i^I)^{-1}(L)) \subset (\tau_i^{I'})^{-1}(L) \text{ for } i \in I'. \tag{10}
$$

Because of (8) , (10) and (7) holds

$$
\Pi^I_{I'}((\tau^I_i)^{-1}(L))=(\tau^{I'}_i)^{-1}(L)
$$

for $I, I' \in \mathcal{I}, I' \subset I$ and $i \in N$.

Intersections of system behaviours play an important role concerning uniformity of parameterisation. Therefore, some general properties of intersections of families of sets will be presented.

Let *T* be a set. A family $f = (f_t)_{t \in T}$ with $f_t \in F$ for each $t \in T$ is formally equivalent to a function $f: T \to F$ with $f_t := f(t)$.

Let M be a set. A family $f = (f_t)_{t \in T}$ with $f_t \in F = \mathcal{P}(M)$ for each $t \in T$ is called a family of subsets of M.

Let now $T \neq \emptyset$ and *f* a family of subsets of *M*. The intersection $\bigcap f_t$ is defined by *t*∈*T*

$$
\bigcap_{t \in T} f_t = \{ m \in M | m \in f_t \text{ for each } t \in T \}. \tag{11}
$$

If $f = g \circ h$ with $h: T \to H$ and $g: H \to F$ then

$$
\bigcap_{t \in T} f(t) = \bigcap_{x \in h(T)} g(x). \tag{12}
$$

If especially $f = h$ and g is the identity on F , then from [\(12\)](#page-1-5) follows

$$
\bigcap_{t \in T} f(t) = \bigcap_{x \in f(T)} x.
$$

For a second family of sets $f': T' \to F$ with $f'(T') =$ $f(T)$ follows then

$$
\bigcap_{t \in T} f(t) = \bigcap_{t' \in T'} f(t').
$$

In the following we will use family and function notations side by side.

Let $f = (f_t)_{t \in T}$ a family of sets with $f: T \to F = \mathcal{P}(M)$. If $T = \check{T} \cup \hat{T}$ with $\check{T} \neq \emptyset$ and $f(\hat{T}) = \{M\}$, then from [\(11\)](#page-1-6) follows

$$
\bigcap_{t \in T} f(t) = \bigcap_{t \in \mathring{T}} f(t). \tag{13}
$$

Let $\mathcal{E}_{\mathcal{I}} = (E(t,I))_{(t,I) \in T \times \mathcal{I}}$ be an influence structure for I indexed by *T*.

For each $I \in \mathcal{I}$ a family of sets

$$
\mathcal{E}_{\mathcal{I}}(I) := (E(t,I))_{t \in T}
$$

with $E(t, I) = \mathcal{E}_{\mathcal{I}}(I)(t) \in \mathcal{P}(I)$ is defined, and it holds

$$
\mathcal{E}_{\mathcal{I}}(I):T\to\mathcal{P}(I). \tag{14}
$$

From [\(12\)](#page-1-5) it follows (with $h = \mathcal{E}_{\mathcal{I}}(I)$)

$$
\bigcap_{t \in T} (\tau_{E(t,I)}^I)^{-1}(V) = \bigcap_{x \in \mathcal{E}_{\mathcal{I}}(I)(T)} (\tau_x^I)^{-1}(V) \tag{15}
$$

for each $V \subset \Sigma^*$ and $I \in \mathcal{I}$.

For each $I \in \mathcal{I}$ holds $\tau_{\emptyset}^{I}(w) = \varepsilon$ for each $w \in \Sigma_{I}^{*}$. It follows,

$$
(\tau_{\emptyset}^{I})^{-1}(V) = \Sigma_{I}^{*} \text{ if } \varepsilon \in V \subset \Sigma^{*}.
$$
 (16)

Because of (12) , (13) , (15) , and (16)

$$
\bigcap_{t \in T} (\tau_{E(t,I)}^I)^{-1}(V) = \bigcap_{x \in \mathcal{E}_{\mathcal{I}}(I)(T_I)} (\tau_x^I)^{-1}(V) \n= \bigcap_{t \in T_I} (\tau_{E(t,I)}^I)^{-1}(V)
$$
\n(17)

for each T_I with $\emptyset \neq T_I \subset T$ and $\mathcal{E}_{\mathcal{I}}(I)(T) \setminus \mathcal{E}_{\mathcal{I}}(I)(T_I) \in$ $\{\emptyset, \{\emptyset\}\}\$ and $\varepsilon \in V \subset \Sigma^*$.

Each bijection $\iota : I \to I'$ defines another bijection $\check{\iota}$: $\mathcal{P}(I) \to \mathcal{P}(I')$ by

$$
\breve{\iota}(x) := {\iota(y) \in I'| y \in x} \text{ for each } x \in \mathcal{P}(I). \tag{18}
$$

Lemma 3. Let $\mathcal{E}_{\mathcal{I}} = (E(t,I))_{(t,I) \in T \times \mathcal{I}}$ be an influ*ence structure for* I *indexed by* T *, and let* B_I = $(\mathcal{B}(I, I'))_{(I, I')\in\mathcal{I}\times\mathcal{I}}$ *be an isomorphism structure for* \mathcal{I} *. Let*

$$
\varepsilon \in V \subset \Sigma^*, \text{ and let } (T_K)_{K \in \mathcal{I}} \text{ be a family}
$$

with $\emptyset \neq T_K \subset T$ and
 $\mathcal{E}_{\mathcal{I}}(K)(T) \setminus \mathcal{E}_{\mathcal{I}}(K)(T_K) \in \{\emptyset, \{\emptyset\}\}\text{ for each } K \in \mathcal{I},$
such that $i(\mathcal{E}_{\mathcal{I}}(I)(T_I)) = \mathcal{E}_{\mathcal{I}}(I')(T_{I'})$
for each $(I, I') \in \mathcal{I} \times \mathcal{I}$ and $\iota \in \mathcal{B}(I, I')$, (19)

then

$$
\bigcap_{t \in T} (\tau_{E(t,I)}^I)^{-1}(V) = \bigcap_{t \in T_I} (\tau_{E(t,I)}^I)^{-1}(V) \tag{20}
$$

for each $I \in \mathcal{I}$ *, and*

$$
\iota_{I'}^I[\bigcap_{t \in T} (\tau_{E(t,I)}^I)^{-1}(V)] = \bigcap_{t \in T} (\tau_{E(t,I')}^{I'})^{-1}(V) \tag{21}
$$

for each $(I, I') \in I \times I$ *and* $\iota \in \mathcal{B}(I, I').$

Proof of [\(20\)](#page-2-3): Because of [\(17\)](#page-2-4) from assumption [\(19\)](#page-2-5) directly follows [\(20\)](#page-2-3).

For the proof of (21) the following property of the homomorphisms τ_K^I is needed:

Let $\iota : I \to I'$ a bijection and $K \subset I$, then $\tau_{\iota}^{I'}$ $\iota(K) \circ \iota_{I'}^I = \tau_K^I$ and so

$$
\tau_{\iota(K)}^{I'} = \tau_K^I \circ (\iota_{I'})^{-1}.
$$
\n(22)

п

П

Proof of [\(22\)](#page-2-7)*:*

The elements of Σ_I are of the form a_i with $i \in I$ and $a \in \Sigma$. For these elements holds

$$
\tau_K^I(a_i) = \begin{cases} a \mid & i \in K \\ \varepsilon \mid & i \in I \setminus K \end{cases}
$$

$$
= \begin{cases} a \mid & \iota(i) \in \iota(K) \\ \varepsilon \mid & \iota(i) \in I' \setminus \iota(K) \end{cases}
$$

$$
= \tau_{\iota(K)}^{I'}(a_{\iota(i)}) = \tau_{\iota(K)}^{I'}(\iota_{I'}^{I}(a_i))
$$

which proves (22) .

Proof of [\(21\)](#page-2-6): Because of [\(17\)](#page-2-4) and [\(22\)](#page-2-7)

$$
\iota_{I'}^I[\bigcap_{t \in T} (\tau_{E(t,I)}^I)^{-1}(V)]
$$
\n
$$
= \iota_{I'}^I[\bigcap_{x \in \mathcal{E}_\mathcal{I}(I)(T_I)} (\tau_x^I)^{-1}(V)]
$$
\n
$$
= ((\iota_{I'}^I)^{-1})^{-1}[\bigcap_{x \in \mathcal{E}_\mathcal{I}(I)(T_I)} (\tau_x^I)^{-1}(V)]
$$
\n
$$
= \bigcap_{x \in \mathcal{E}_\mathcal{I}(I)(T_I)} (((\iota_{I'}^I)^{-1})^{-1}[(\tau_x^I)^{-1}(V)]
$$
\n
$$
= \bigcap_{x \in \mathcal{E}_\mathcal{I}(I)(T_I)} (\tau_x^I \circ (\iota_{I'}^I)^{-1})^{-1}(V)
$$
\n
$$
= \bigcap_{x \in \mathcal{E}_\mathcal{I}(I)(T_I)} (\tau_{\iota(x)}^I)^{-1}(V)
$$
\n
$$
= \bigcap_{x \in \mathcal{E}_\mathcal{I}(I)(T_I)} (\tau_{\iota(x)}^I)^{-1}(V).
$$
\n(23)

From (12) (with $h = \tilde{\iota}$) and the assumption (19) follows

$$
\bigcap_{x \in \mathcal{E}_{\mathcal{I}}(I)(T_I)} (\tau_{\check{\iota}(x)}^{I'})^{-1}(V) = \bigcap_{x' \in \check{\iota}(\mathcal{E}_{\mathcal{I}}(I)(T_I))} (\tau_{x'}^{I'})^{-1}(V) = \bigcap_{x' \in \mathcal{E}_{\mathcal{I}}(I')(T_I')} (\tau_{x'}^{I'})^{-1}(V).
$$

Furthermore, from [\(17\)](#page-2-4) follows

$$
\bigcap_{x' \in \mathcal{E}_{\mathcal{I}}(I')(T'_I)} (\tau_{x'}^{I'})^{-1}(V) = \bigcap_{t \in T} (\tau_{E(t,I')}^{I'})^{-1}(V). \tag{24}
$$

 (23) - (24) prove (21) .

The case $T = N$, where $\mathcal I$ is based on N , allows a simpler sufficient condition for (20) and (21) .

Lemma 4. *Let* I *be a parameter structure based on N,* $\mathcal{E}_{\mathcal{I}} = (E(n, I))_{(n, I) \in N \times \mathcal{I}}$ *be an influence structure for* I *, and let* $\mathcal{B}_{\mathcal{I}} = (\mathcal{B}(I, I'))_{(I, I') \in \mathcal{I} \times \mathcal{I}}$ *be an isomorphism*

structure for I*.*

Let
$$
\varepsilon \in V \subset \Sigma^*
$$
,
\nfor each $I \in \mathcal{I}$ and $n \in N$ let $E(n, I) = \emptyset$,
\nor it exists an $i_n \in I$ with $E(n, I) = E(i_n, I)$, and (25b)
\nfor each $(I, I') \in \mathcal{I} \times \mathcal{I}, \iota \in \mathcal{B}(I, I')$ and $i \in I$ holds
\n $\iota(E(i, I)) = E(\iota(i), I').$ (25c)

Then

$$
\bigcap_{n \in N} (\tau_{E(n,I)}^I)^{-1}(V) = \bigcap_{n \in I} (\tau_{E(n,I)}^I)^{-1}(V) \tag{26}
$$

for each $I \in \mathcal{I}$ *, and*

$$
\iota_{I'}^I[\bigcap_{n\in N} (\tau_{E(n,I)}^I)^{-1}(V)] = \bigcap_{n\in N} (\tau_{E(n,I')}^{I'})^{-1}(V) \qquad (27)
$$

for each $(I, I') \in I \times I$ *and* $\iota \in \mathcal{B}(I, I').$

Proof: From [\(25b\)](#page-3-1) follows $\mathcal{E}_{\mathcal{I}}(I)(N) = \mathcal{E}_{\mathcal{I}}(I)(I)$ or $\mathcal{E}_{\mathcal{I}}(I)(N) = \mathcal{E}_{\mathcal{I}}(I)(I) \cup \{\emptyset\},\$ so

$$
\mathcal{E}_{\mathcal{I}}(I)(N) \setminus \mathcal{E}_{\mathcal{I}}(I)(I) \in \{\emptyset, \{\emptyset\}\} \text{ for each } I \in \mathcal{I}.
$$
 (28)

From [\(25c\)](#page-3-2) follows

$$
\breve{\iota}(\mathcal{E}_{\mathcal{I}}(I)(I)) \subset \mathcal{E}_{\mathcal{I}}(I')(I'). \tag{29}
$$

Because $\iota: I \to I'$ is a bijection, for each $i' \in I'$ exists an $i \in I$ with $\iota(i) = i'$. Because of [\(25c\)](#page-3-2) holds $\breve{\iota}(E(i, I)) =$ $E(i', I')$, where $E(i, I) \in \mathcal{E}_{\mathcal{I}}(I)(I)$. From this follows

$$
\mathcal{E}_{\mathcal{I}}(I')(I') \subset \breve{\iota}(\mathcal{E}_{\mathcal{I}}(I)(I)).\tag{30}
$$

Because of [\(28\)](#page-3-3) - [\(30\)](#page-3-4), with $T = N$ and $(T_I)_{I \in \mathcal{I}} = (I)_{I \in \mathcal{I}}$,

$$
(25a) - (25c) \text{ implies } (19).
$$

(32)

Example 2 (Example [1](#page-1-7) (continued))**.** *Let* I *be a parameter structure based on N* and $\mathcal{B}_{\mathcal{I}} = (\mathcal{B}(I, I'))_{(I, I') \in \mathcal{I} \times \mathcal{I}}$ *be* an isomorphism structure for I . Then $\dot{\mathcal{E}}_I$ satisfies [\(25b\)](#page-3-1) *and* [\(25c\)](#page-3-2)*.*

So for $\varepsilon \in L \subset \Sigma^*$ Lemma [4](#page-2-10) implies

$$
\bigcap_{n\in N} (\tau_n^I)^{-1}(L) = \bigcap_{n\in I} (\tau_n^I)^{-1}(L) \text{ for each } I \in \mathcal{I} \text{ and}
$$

$$
\iota_{I'}^I[\bigcap_{n\in N} (\tau_n^I)^{-1}(L)] = \bigcap_{n\in N} (\tau_n^{I'})^{-1}(L) \tag{31}
$$

for each $(I, I') \in \mathcal{I} \times \mathcal{I}$ and $\iota \in \mathcal{B}(I, I')$.

Now Lemma [2](#page-1-8) together with [\(31\)](#page-3-6) proves Theorem [2.](#page-0-2)

Because of $\tau_n^I = \tau_{\dot{E}(n,I)}^I$ for $I \in \mathcal{I}$ and $n \in \mathcal{N}$, [\(31\)](#page-3-6) and the definitions of $(\mathcal{L}(L)_{I})_{I\in\mathcal{I}}$ and $(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_{I})_{I\in\mathcal{I}}$ imply

$$
\dot{\mathcal{L}}(L)_I = \bigcap_{n \in I} (\tau_n^I)^{-1}(L) = \bigcap_{n \in I} (\tau_n^I)^{-1}(L) \cap \bigcap_{n \in I} (\tau_n^I)^{-1}(V)
$$
\n
$$
= \dot{\mathcal{L}}(L)_I \cap \bigcap_{n \in N} (\tau_n^I)^{-1}(V)
$$
\n
$$
= \dot{\mathcal{L}}(L)_I \cap \bigcap_{n \in N} (\tau_{\dot{E}(n,I)}^I)^{-1}(V)
$$
\n
$$
= \mathcal{L}(L, \dot{\mathcal{E}}_I, V)_I
$$
\n(33)

for $I \in \mathcal{I}$ and $V \supset L$.

[\(33\)](#page-3-7) gives a representation of $(\mathcal{L}(L)_I)_{I \in \mathcal{I}}$ in terms of $(\mathcal{L}(L,\mathcal{E}_{\mathcal{T}},V)_I)_{I\in\mathcal{T}}$.

For the following theorems please remember that by the general definition of $\mathcal{L}(L,\mathcal{E}_I,V)_I$ it is assumed that $\emptyset \neq L \subset$ *V* and L, V are prefix closed. This implies $\varepsilon \in L \subset V$.

Lemma 5. Let I be a parameter structure, \mathcal{E}_I an influence *structure for* I *indexed by* T *and* B_I *an isomorphism structure for* I*.*

Assuming [\(2\)](#page-0-3) *and* [\(19\)](#page-2-5)*, then*

$$
(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_I)_{I\in\mathcal{I}}
$$

is a scalable systems with respect to $\mathcal{B}_{\mathcal{I}}$.

It holds
$$
\mathcal{L}(L, \mathcal{E}_{\mathcal{I}}, V)_I = \dot{\mathcal{L}}(L)_I \cap \bigcap_{n \in T_I} (\tau_{E(n, I)}^I)^{-1}(V)
$$

for each $I \in \mathcal{I}$ *.*

Proof: By Theorem [2,](#page-0-2) $(\mathcal{L}(L)_I)_{I \in \mathcal{I}}$ is a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$. By Lemma [1](#page-0-4) and [3](#page-2-11) [\(21\)](#page-2-6)

$$
(\bigcap_{t\in T}(\tau_{E(t,I)}^I)^{-1}(V))_{I\in\mathcal{I}}
$$

is a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$ too. Now part (ii) of the intersection theorem proves $(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_{I})_{I\in\mathcal{I}}$ to be a scalable system with respect to $\mathcal{B}_{\mathcal{I}}$. Lemma [3](#page-2-11) [\(20\)](#page-2-3) completes the proof of Lemma [5.](#page-3-8)

Using Lemma [4](#page-2-10) instead of Lemma [3](#page-2-11) proves the following.

Theorem 3 (construction condition for scalable systems)**.** *By the assumptions of Lemma* 4 *and* [\(2\)](#page-0-3) *with* $T = N$, $(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_I)_{I\in\mathcal{I}}$ *is a scalable system with respect to* $\mathcal{B}_{\mathcal{I}}$ *. It holds* $\mathcal{L}(L, \mathcal{E}_I, V)_I = \dot{\mathcal{L}}(L)_I \cap \bigcap$ *n*∈*I* $(\tau_{E(n,I)}^I)^{-1}(V)).$

Remark 1. *It can be shown that in* $SP(L, V)$ **N** *can be replaced by each countable infinite set. Let therefore* N' be *another set and* $\iota : \mathbb{N} \to N'$ *a bijection.* $\iota^{\mathbb{N}}_{N'} : \Sigma^*_{\mathbb{N}} \to \Sigma^*_{N'}$ *is the isomorphism defined as in the definition of isomorphism structure. It now holds*

$$
\Theta^{\mathbb{N}} = \Theta^{N'} \circ \iota_{N'}^{\mathbb{N}} \text{ and } \tau_n^{\mathbb{N}} = \tau_{\iota(n)}^{N'} \circ \iota_{N'}^{\mathbb{N}} \tag{34}
$$

for each $n \in \mathbb{N}$ *. Furthermore,*

$$
\iota_{N'}^{\mathbb{N}} \circ \Pi_{K}^{\mathbb{N}} = \Pi_{\iota(K)}^{N'} \circ \iota_{N'}^{\mathbb{N}} \tag{35}
$$

for each $K \subset \mathbb{N}$ *. From* [\(34\)](#page-3-9) *and commutativity of intersection now*

$$
(\bigcap_{n\in\mathbb{N}}(\tau_n^{\mathbb{N}})^{-1}(L))\cap(\Theta^{\mathbb{N}})^{-1}(V) =
$$

= $(\iota_{N'}^{\mathbb{N}})^{-1}[(\bigcap_{n\in\mathbb{N}}(\tau_{\iota(n)}^{N'})^{-1}(L))\cap(\Theta^{N'})^{-1}(V)]$
= $(\iota_{N'}^{\mathbb{N}})^{-1}[(\bigcap_{n'\in N'}(\tau_{n'}^{N'})^{-1}(L))\cap(\Theta^{N'})^{-1}(V)].$ (36)

By [\(35\)](#page-3-10)*,*

$$
\Pi_K^{\mathbb{N}} \circ (\iota_{N'}^{\mathbb{N}})^{-1} = (\iota_{N'}^{\mathbb{N}})^{-1} \circ \Pi_{\iota(K)}^{N'}.
$$
 (37)

Because of [\(36\)](#page-4-0) *and* [\(37\)](#page-4-1)

$$
\Pi_K^{\mathbb{N}}[(\bigcap_{n\in\mathbb{N}}(\tau_n^{\mathbb{N}})^{-1}(L))\cap(\Theta^{\mathbb{N}})^{-1}(V)] =
$$
\n
$$
=(\iota_{N'}^{\mathbb{N}})^{-1}(\Pi_{\iota(K)}^{N'}[(\bigcap_{n'\in N'}(\tau_{n'}^{N'})^{-1}(L))\cap(\Theta^{N'})^{-1}(V)]).
$$
\n(38)

From

$$
\Pi_K^{\mathbb{N}}[(\bigcap_{n\in\mathbb{N}}(\tau_n^{\mathbb{N}})^{-1}(L))\cap (\Theta^{\mathbb{N}})^{-1}(V)]\subset (\Theta^{\mathbb{N}})^{-1}(V)
$$

now follows

$$
\Pi_{\iota(K)}^{N'}[(\bigcap_{n' \in N'} (\tau_{n'}^{N'})^{-1}(L)) \cap (\Theta^{N'})^{-1}(V)]
$$

$$
\subset \iota_{N'}^{\mathbb{N}}((\Theta^{\mathbb{N}})^{-1}(V)).
$$
 (39)

Because of [\(34\)](#page-3-9) $\Theta^{\mathbb{N}} \circ (\iota_{N'}^{\mathbb{N}})^{-1} = \Theta^{N'}$ and so

$$
(\Theta^{N'})^{-1}(V) = \iota_{N'}^{\mathbb{N}}((\Theta^{\mathbb{N}})^{-1}(V)).
$$

Therefore, from [\(39\)](#page-4-2) *follows*

$$
\Pi_{\iota(K)}^{N'}[(\bigcap_{n'\in N'}(\tau_{n'}^{N'})^{-1}(L))\cap(\Theta^{N'})^{-1}(V)]\subset(\Theta^{N'})^{-1}(V).
$$
\n(40)

Because for each $\emptyset \neq K' \subset N'$ *it exists an* $\emptyset \neq K \subset \mathbb{N}$ *with* $K' = \iota(K)$ *, by* $SP(L, V)$ *, we get for each* $\emptyset \neq K \subset \mathbb{N}$ *a* corresponding inclusion with N' replacing $\mathbb N$ and K' for *K.*

Lemma 6. *The assumptions of Lemma [1](#page-0-4) and Lemma [2](#page-1-8) together with* $SP(L, V)$ *imply that* $(X(L, V, t)_I)_{I \in \mathcal{I}}$ *with*

$$
X(L, V, t)_I := \bigcap_{n \in N} (\tau_n^I)^{-1}(L) \cap (\tau_{E(t, I)}^I)^{-1}(V)
$$

is a self-similar monotonic parameterised system for each $t \in T$ *.*

Lemma [1](#page-0-4) and Lemma [2,](#page-1-8) $((\tau_{E(t,I)}^I)^{-1}(V))_{I\in\mathcal{I}}$ and ($\bigcap (\tau_n^I)^{-1}(L))_{I \in \mathcal{I}}$ are $n \in N$
monotonic parameterised systems. So by the intersection theorem $(X(L, V, t)_I)_{I \in \mathcal{I}}$ is a monotonic parameterised system for each $t \in T$. Therefore

$$
X(L, V, t)_{I'} = \Pi_{I'}^I(X(L, V, t)_{I'}) \subset \Pi_{I'}^I(X(L, V, t)_{I})
$$

for each $I, I' \in \mathcal{I}$ with $I' \subset I$. So the proof of self-similarity can be reduced to the proof of

$$
\Pi_{I'}^I(X(L,V,t)_I) \subset X(L,V,t)_{I'} \tag{41}
$$

for each $t \in T$ and $I, I' \in \mathcal{I}$ with $I' \subset I$. Because by Lemma [2](#page-1-8)

$$
(\bigcap_{n\in N}(\tau_n^I)^{-1}(L))_{I\in\mathcal{I}}
$$

is self-similar, it holds

$$
\Pi^I_{I'}(X(L,V,t)_I) \subset \Pi^I_{I'}(\bigcap_{n \in N} (\tau^I_n)^{-1}(L)) = \bigcap_{n \in N} (\tau^I_n)^{-1}(L).
$$

So the proof of [\(41\)](#page-4-3) can be reduced to the proof of

$$
\Pi_{I'}^I[\bigcap_{n\in N} (\tau_n^I)^{-1}(L) \cap (\tau_{E(t,I)}^I)^{-1}(V)] \subset (\tau_{E(t,I')}^{I'})^{-1}(V)
$$
\n(42)

for each $t \in T$ and $I, I' \in \mathcal{I}$ with $I' \subset I$. For each $w \in (\bigcap$ *n*∈*N* $(\tau_n^I)^{-1}(L) \cap (\tau_{E(t,I)}^I)^{-1}(V)$ exists a $r \in \mathbb{N}$ and $u_i \in \sum_{E(t,I)}^{n}$ for $1 \leq i \leq r$ and $v_i \in \sum_{I \setminus E(t,I)}^{n}$ for $1 \leq i \leq r$ with $w = u_1 v_1 u_2 v_2 \dots u_r v_r$. Note that $\Sigma_{\emptyset} := \emptyset$ and $\emptyset^* = {\varepsilon}.$

Because $u_1 u_2 ... u_r \in \sum_{E(t,I)}^*$ and $v_1 v_2 ... v_r \in \sum_{I \setminus E(t,I)}^*$ holds

$$
\Theta^{N}(u_{1}u_{2}...u_{r}) = \tau_{E(t,I)}^{I}(u_{1}u_{2}...u_{r})
$$

= $\tau_{E(t,I)}^{I}(w) \in V.$ (43)

With the same argumentation holds

$$
\tau_n^N(u_1 u_2 \dots u_r) = \tau_n^I(u_1 u_2 \dots u_r) = \tau_n^I(w) \in L \tag{44}
$$

for $n \in E(t, I)$ and

$$
\tau_n^N(u_1 u_2 \dots u_r) = \varepsilon \in L \tag{45}
$$

for
$$
n \in N \setminus E(t, I)
$$
. With (43) - (45) now

$$
u_1 u_2 ... u_r \in (\bigcap_{n \in N} (\tau_n^N)^{-1}(L)) \cap (\Theta^N)^{-1}(V),
$$

and on behalf of precondition $SP(L, V)$ holds

$$
\Pi_{I'}^N(u_1 u_2 \dots u_r) = \Pi_{I' \cap E(t, I)}^{E(t, I)}(u_1 u_2 \dots u_r)
$$

$$
\in \Sigma_{I' \cap E(t, I)}^* \cap (\Theta^N)^{-1}(V). \tag{46}
$$

Furthermore,

$$
\Pi_{I'}^{I}(w) = \Pi_{I'}^{I}(u_1v_1u_2v_2...u_rv_r)
$$

\n
$$
= \Pi_{I'\cap E(t,I)}^{E(t,I)}(u_1)\Pi_{I'\setminus E(t,I)}^{I\setminus E(t,I)}(v_1)...
$$

\n
$$
\Pi_{I'\cap E(t,I)}^{E(t,I)}(u_r)\Pi_{I'\setminus E(t,I)}^{I\setminus E(t,I)}(v_r).
$$
\n(47)

Because of [\(2\)](#page-0-3), $E(t, I') \subset E(t, I)$ and so $I' \setminus E(t, I) \subset$ $I' \setminus E(t, I')$ and thus

$$
\tau_{E(t,I')}^{I'}(\Pi_{I'\setminus E(t,I)}^{I\setminus E(t,I)})(v_i) = \varepsilon
$$

for $1 \leq i \leq r$. With [\(2\)](#page-0-3) and [\(47\)](#page-4-6) it follows

$$
\tau_{E(t,I')}^{I'}(\Pi_{I'}^{I}(w)) = \tau_{E(t,I')}^{I'}(\Pi_{E(t,I')}^{E(t,I)}(u_1 \dots u_r)). \tag{48}
$$

Because $\tau_E^{I'}$ $E(t, I')(x) = \Theta^N(x)$ for each $x \in \Sigma_{E(t, I')}^*$ now on behalf of (48) , (2) , and (46)

$$
\tau_{E(t,I')}^{I'}(\Pi_{I'}^I(w)) = \Theta^N(\Pi_{E(t,I')}^{E(t,I)}(u_1 \dots u_r)) \in V,
$$

and thus $\Pi_{I'}^I(w) \in (\tau_E^{I'}$ $(E(t, I'))^{-1}(V)$. This proves [\(42\)](#page-4-9) and completes the proof of Lemma 6 .

Because of the idempotence of intersection

$$
\bigcap_{n\in N} (\tau_n^I)^{-1}(L)\cap \bigcap_{t\in T} (\tau_{E(t,I)}^I)^{-1}(V)
$$

=
$$
\bigcap_{t\in T} [\bigcap_{n\in N} (\tau_n^I)^{-1}(L)\cap (\tau_{E(t,I)}^I)^{-1}(V)].
$$

Now the intersection theorem and Lemma [6](#page-4-10) imply

Lemma 7. If $SP(L, V)$ *, then by the assumptions of Lemma [1](#page-0-4) and [2](#page-1-8)*

$$
[\bigcap_{n\in N}(\tau_n^I)^{-1}(L)\cap \bigcap_{t\in T}(\tau_{E(t,I)}^I)^{-1}(V)]_{I\in\mathcal{I}}
$$

is a self-similar monotonic parameterised system.

Combining Lemma [7](#page-5-0) with Lemma [5](#page-3-8) or Theorem [3](#page-3-11) imply

Theorem 4 (construction condition for well-behaved scalable systems)**.** *By the assumptions of Lemma [5](#page-3-8) or Theorem [3](#page-3-11) together with* $SP(L, V)$

$$
(\mathcal{L}(L,\mathcal{E}_{\mathcal{I}},V)_I)_{I\in\mathcal{I}}
$$

is a well-behaved scalable system.

Theorem 5 (inverse abstraction theorem). Let $\varphi : \Sigma^* \to$ Φ^* *be an alphabetic homomorphism and* $W, X \subset \Phi^*$, *then*

$$
SP(W, X) \implies SP(\varphi^{-1}(W), \varphi^{-1}(X)).
$$

Proof of Theorem [5:](#page-5-1)

Let *K* be a non-empty set. Each alphabetic homomorphism $\varphi : \Sigma^* \to \Phi^*$ defines a homomorphism $\varphi^K : \Sigma^*_K \to$ Φ_K^* by

$$
\varphi^K(a_n) := (\varphi(a))_n \text{ for } a_n \in \Sigma_K, \text{ where } (\varepsilon)_n = \varepsilon. \tag{49}
$$

If $\bar{\tau}_{n_k}^K : \Phi_K^* \to \Phi$ and $\bar{\Theta}^K : \Phi_K^* \to \Phi$ are defined analogous to τ_n^K and Θ^K , then

$$
\varphi \circ \tau_n^K = \bar{\tau}_n^K \circ \varphi^K, \text{ and } \varphi \circ \Theta^K = \bar{\Theta}^K \circ \varphi^K. \tag{50}
$$

Let now N be an infinite countable set. Because of (50) , for $W, X \subset \Phi^*$

$$
\left(\bigcap_{n\in N} (\tau_n^N)^{-1} (\varphi^{-1}(W))\right) \cap (\Theta^N)^{-1} (\varphi^{-1}(X))
$$

= $(\varphi^N)^{-1} [(\bigcap_{n\in N} (\bar{\tau}_n^N)^{-1}(W)) \cap (\bar{\Theta}^N)^{-1}(X)].$ (51)

Because of $\varphi^K(w) = \varphi^N(w)$ for $w \in \Sigma_K^* \subset \Sigma_N^*$ and $\emptyset \neq$ *K* ⊂ *N*

$$
(\varphi^K)^{-1}(Z) \subset (\varphi^N)^{-1}(Z) \text{ for } Z \subset \Phi_K^*.
$$
 (52)

If now $SP(W, X)$, and

$$
\Pi_K^N[(\varphi^N)^{-1}(Y)] = (\varphi^K)^{-1}(\bar{\Pi}_K^N[Y])
$$
\n(53)

for $Y \subset \Phi_N^*$ and $\emptyset \neq K \subset N$, where $\bar{\Pi}_K^N : \Phi_N^* \to \Phi_K^*$ is defined analogous to Π_K^N , then follows (with (50) - (53))

$$
\Pi_K^N[(\bigcap_{n \in N} (\tau_n^N)^{-1} (\varphi^{-1}(W))) \cap (\Theta^N)^{-1} (\varphi^{-1}(X))]
$$
\n
$$
= (\varphi^K)^{-1} (\bar{\Pi}_K^N[(\bigcap_{n \in N} (\bar{\tau}_n^N)^{-1}(W)) \cap (\bar{\Theta}^N)^{-1}(X)])
$$
\n
$$
\subset (\varphi^K)^{-1}((\bar{\Theta}^N)^{-1}(X)) \subset (\varphi^N)^{-1}((\bar{\Theta}^N)^{-1}(X))
$$
\n
$$
= (\Theta^N)^{-1}(\varphi^{-1}(X)).
$$
\n(54)

With [\(54\)](#page-5-4)

$$
SP(\varphi^{-1}(W), \varphi^{-1}(X))
$$
 follows from $SP(W, X)$, (55)

if [\(53\)](#page-5-3) holds.

It remains to show (53) . For the proof of (53) it is sufficient to prove

$$
\Pi_K^N((\varphi^N)^{-1}(y) = (\varphi^K)^{-1}(\bar{\Pi}^N_K(y))
$$
 (56)

for each $y \in \Phi_N^*$, because of

Π

$$
\Pi_K^N((\varphi^N)^{-1}(Y) = \bigcup_{y \in Y} \Pi_K^N((\varphi^N)^{-1}(y))
$$

and

$$
(\varphi^K)^{-1}(\bar{\Pi}^N_K(Y))=\bigcup_{y\in Y}(\varphi^K)^{-1}(\bar{\Pi}^N_K(y)).
$$

Here, for $f : A \to B$ and $b \in B$ we use the convention

$$
f^{-1}(b) = f^{-1}(\{b\}).
$$

With $Y = \{y\}$ [\(56\)](#page-5-5) is also necessary for [\(53\)](#page-5-3), and so it is equivalent to [\(53\)](#page-5-3).

Definition 1 ((general) projection)**.** *For arbitrary alphabets* Δ *and* Δ' *with* $\Delta' \subset \Delta$ general projections $\pi_{\Delta'}^{\Delta} : \Delta^* \to$ ∆0∗ *are defined by*

$$
\pi_{\Delta'}^{\Delta}(a) := \begin{cases} a \mid & a \in \Delta' \\ \varepsilon \mid & a \in \Delta \setminus \Delta' \end{cases} . \tag{57}
$$

In this terminology the projections

$$
\Pi_K^N : \Sigma_N^* \to \Sigma_K^* \text{ and } \bar{\Pi}_K^N : \Phi_N^* \to \Phi_K^*
$$

considered until now are special cases, which we call *parameter-projections*. It holds

$$
\Pi_K^N = \pi_{\Sigma_K}^{\Sigma_N} \text{ and } \bar{\Pi}_K^N = \pi_{\Phi_K}^{\Phi_N}.
$$
 (58)

Because of the different notations, in general we just use the term *projection* for both cases.

We now consider the equation [\(56\)](#page-5-5) for the special case, where $\varphi : \Sigma^* \to \Phi^*$ is a projection, that is $\varphi = \pi_{\Phi}^{\Sigma}$ with $\Phi \subset \Sigma$. In this case also $\varphi^N : \Sigma_N^* \to \Phi_N^*$ is a projection, with

$$
\varphi^N = \pi_{\Phi_N}^{\Sigma_N}.\tag{59}
$$

Lemma 8 (projection-lemma)**.**

Let Δ *be an alphabet,* $\Delta' \subset \Delta$, $\Gamma \subset \Delta$ *and* $\Gamma' = \Delta' \cap \Gamma$ *, then*

$$
\pi^{\Delta}_{\Delta'}((\pi^{\Delta}_\Gamma)^{-1}(y))=(\pi^{\Delta'}_{\Gamma'})^{-1}(\pi^{\Delta}_{\Delta'}(y))
$$

for each $y \in \Gamma^*$.

Proof: Let $y \in \Gamma^*$. We show

$$
\pi_{\Gamma'}^{\Delta'}(\pi_{\Delta'}^{\Delta}(z)) = \pi_{\Delta'}^{\Delta}(y) \text{ for each } z \in (\pi_{\Gamma}^{\Delta})^{-1}(y) \qquad (60)
$$

and we show that

for each
$$
u \in (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))
$$
 there exists a
\n $v \in (\pi_{\Gamma}^{\Delta})^{-1}(y)$ such that $\pi_{\Delta'}^{\Delta}(v) = u$. (61)

From [\(60\)](#page-6-0) it follows that

$$
\pi_{\Delta'}^{\Delta}((\pi_{\Gamma}^{\Delta})^{-1}(y)) \subset (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))
$$

and from [\(61\)](#page-6-1) it follows that

$$
(\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y)) \subset \pi_{\Delta'}^{\Delta}((\pi_{\Gamma}^{\Delta})^{-1}(y)),
$$

which in turn proves Lemma 8 .

Proof of [\(60\)](#page-6-0): By definition of π_{Γ}^{Δ} , $\pi_{\Gamma'}^{\Delta'}$ and $\pi_{\Delta'}^{\Delta}$ follows

$$
\pi_{\Gamma'}^{\Delta'}(\pi_{\Delta'}^{\Delta}(z)) = \pi_{\Delta'}^{\Delta}(\pi_{\Gamma}^{\Delta}(z))
$$

for each $z \in \Delta^*$ and therewith [\(60\)](#page-6-0).

Proof of [\(61\)](#page-6-1) by induction on $y \in \Gamma^*$:

Induction base. Let $y = \varepsilon$, then $u \in (\Delta' \setminus \Gamma')^*$ for each $u \in$ $(\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y)).$ From this follows

$$
\pi_{\Delta'}^{\Delta}(v) = u \text{ with } v := u \in (\pi_{\Gamma}^{\Delta})^{-1}(\varepsilon).
$$

Induction step. Let $y = \hat{y}\hat{y}$ with $\hat{y} \in \Gamma^*$ and $\hat{y} \in \Gamma$. Case 1: $\hat{y} \in \Gamma \setminus \Gamma' = \Gamma \cap (\Delta \setminus \Delta')$ Then

$$
(\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y)) = (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(\mathring{y})).
$$

By induction hypothesis then for each $u \in (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(y))$ it exists $\mathring{v} \in (\pi_{\Gamma}^{\Delta})^{-1}(\mathring{y})$ such that $\pi_{\Delta'}^{\Delta}(\mathring{v}) = u$. With $v := \hat{v}\hat{y}$ holds $\pi_{\Gamma}^{\Delta}(\hat{v}\hat{y}) = \hat{y}\hat{y} = y$ and hence

$$
v \in (\pi_{\Gamma}^{\Delta})^{-1}(y)
$$
 and $\pi_{\Delta'}^{\Delta}(v) = \pi_{\Delta'}^{\Delta}(\mathring{v}) = u$.

Case 2: $\hat{y} \in \Gamma' \subset \Delta'$

Then $\pi_{\Delta'}^{\Delta}(y) = \pi_{\Delta'}^{\Delta}(\mathring{y})\hat{y}$. Therefore, each $u \in$ $(\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta'}(y))$ can be departed into $u = \mathring{u}\hat{y}\hat{u}$ with $\hat{u} \in (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Delta'}^{\Delta}(\hat{y}))$ and $\hat{u} \in (\Delta' \setminus \Gamma')^*$.

By induction hypothesis then exists $\mathring{v} \in (\pi_{\Gamma}^{\Delta})^{-1}(\mathring{y})$ such that $\pi_{\Delta'}^{\Delta}(\mathring{v}) = \mathring{u}$.

With $v := \hat{v}\hat{y}\hat{u}$ holds $\pi_{\Gamma}^{\Delta}(\hat{v}\hat{y}\hat{u}) = \hat{y}\hat{y} = y$ and hence

$$
v \in (\pi_{\Gamma}^{\Delta})^{-1}(y)
$$
 and $\pi_{\Delta'}^{\Delta}(v) = \pi_{\Delta'}^{\Delta}(\mathring{v})\hat{y}\hat{u} = \mathring{u}\hat{y}\hat{u} = u.$

This completes the proof of [\(61\)](#page-6-1).

For $y \in \Gamma^*$ holds

$$
\pi_{\Delta'}^{\Delta}(y) = \pi_{\Delta' \cap \Gamma}^{\Gamma}(y) = \pi_{\Gamma'}^{\Gamma}(y).
$$

Therewith, from Lemma [8](#page-5-6) follows

$$
\pi_{\Delta'}^{\Delta}((\pi_{\Gamma}^{\Delta})^{-1}(y)) = (\pi_{\Gamma'}^{\Delta'})^{-1}(\pi_{\Gamma'}^{\Gamma}(y))
$$
 for each $y \in \Gamma^*$. (62)

For $\emptyset \neq K \subset N, \Phi \subset \Sigma, \Delta := \Sigma_N, \Delta' := \Sigma_K$, and $\Gamma := \Phi_N$ holds $\Gamma' = \Delta' \cap \Gamma = \Phi_K$.

Assuming $\varphi = \pi_{\Phi}^{\Sigma}$, which implies $\varphi^K = \pi_{\Phi_K}^{\Sigma_K}$ $\frac{\Delta K}{\Phi_K}$, then from (62) (with (58) and (59)), follows

$$
\Pi^{N}_{K}((\varphi^{N})^{-1}(y)) = (\varphi^{K})^{-1}(\bar{\Pi}^{N}_{K}(y))
$$

for $y \in \Phi_N^*$, and so [\(56\)](#page-5-5). With this,

premise (53) is fulfilled for (55) , when φ is a projection, (63)

which proves Theorem [5](#page-5-1) for projections.

Definition 2 (strict alphabetic homomorphism). Let Σ , Φ *alphabets, and* $\varphi : \Sigma^* \to \Phi^*$ *a homomorphism. Then* φ *is called* alphabetic, if $\varphi(\Sigma) \subset \Phi \cup \{\varepsilon\}$, and φ *is called* strict alphabetic, $if \varphi(\Sigma) \subset \Phi$.

Each alphabetic homomorphism $\varphi : \Sigma^* \to \Phi^*$ is the composition of a projection with a strict alphabetic homomorphism, more precisely,

$$
\varphi = \varphi_S \circ \pi_{\varphi^{-1}(\Phi) \cap \Sigma}^{\Sigma},\tag{64}
$$

where $\varphi_S : (\varphi^{-1}(\Phi) \cap \Sigma)^* \to \Phi^*$ is the strict alphabetic homomorphism defined by

$$
\varphi_S(a) := \varphi(a)
$$
 for $a \in \varphi^{-1}(\Phi) \cap \Sigma$.

For $W, X \subset \Phi^*$ and $\varphi : \Sigma^* \to \Phi^*$ alphabetic [\(64\)](#page-6-3) implies

$$
\varphi^{-1}(W) = (\pi_{\varphi^{-1}(\Phi)\cap\Sigma}^{\Sigma})^{-1}((\varphi_S)^{-1}(W)) \text{ and}
$$

$$
\varphi^{-1}(X) = (\pi_{\varphi^{-1}(\Phi)\cap\Sigma}^{\Sigma})^{-1}((\varphi_S)^{-1}(X)).
$$
 (65)

Now with (63) and (65) it remains to prove Theorem [5](#page-5-1) for strict alphabetic homomorphisms. This will be done by Lemma [9,](#page-6-6) which proves [\(56\)](#page-5-5) for strict alphabetic homomorphisms.

Lemma 9. *Let* $\varphi : \Sigma^* \to \Phi^*$ *be a strict alphabetic homomorphism, then for all* $y \in \Phi_N^*$ *and* $\emptyset \neq K \subset N$ *holds*

$$
\Pi_K^N((\varphi^N)^{-1}(y)) = (\varphi^K)^{-1}(\bar{\Pi}_K^N(y)).
$$

Proof: Proof by induction on y.

Induction basis: $y = \varepsilon$ Because φ^N is strict alphabetic

$$
(\varphi^N)^{-1}(\varepsilon) = {\varepsilon} \text{ and so } \Pi_K^N((\varphi^N)^{-1}(\varepsilon)) = {\varepsilon}.
$$

For the same reason

$$
(\varphi^K)^{-1}(\bar{\Pi}^N_K(\varepsilon)) = (\varphi^K)^{-1}(\varepsilon) = \{\varepsilon\}.
$$

Induction step: Let $y = y'a_t$ with $a_t \in \Phi_N$, where $a \in \Phi$ and $t \in N$. Because φ^N is alphabetic, it holds

$$
(\varphi^N)^{-1}(y'a_t) = ((\varphi^N)^{-1}(y'))((\varphi^N)^{-1}(a_t)),
$$

and so

$$
\Pi_K^N((\varphi^N)^{-1}(y'a_t)) = \Pi_K^N((\varphi^N)^{-1}(y'))\Pi_K^N((\varphi^N)^{-1}(a_t)).
$$

Also holds

$$
(\varphi^K)^{-1}(\bar{\Pi}^N_K(y'a_t)) = (\varphi^K)^{-1}(\bar{\Pi}^N_K(y'))(\varphi^K)^{-1}(\bar{\Pi}^N_K(a_t)).
$$

According to the induction hypothesis, it holds

$$
\Pi^{N}_{K}((\varphi^{N})^{-1}(y')) = (\varphi^{K})^{-1}(\bar{\Pi}^{N}_{K}(y')).
$$

Therefore, it remains to show

$$
\Pi_K^N((\varphi^N)^{-1}(a_t)) = (\varphi^K)^{-1}(\bar{\Pi}_K^N(a_t)).
$$

Case 1: $t \notin K$

Because φ^N is strict alphabetic, it holds $(\varphi^N)^{-1}(a_t) \subset \Sigma_t$, so

$$
\Pi_K^N((\varphi^N)^{-1}(a_t)) = \{\varepsilon\}.
$$

Additionally holds $\bar{\Pi}_{K}^{N}(a_{t}) = \varepsilon$, and therewith

$$
(\varphi^K)^{-1}(\bar{\Pi}^N_K(a_t)) = \{\varepsilon\},\
$$

because φ^K is strict alphabetic.

Case 2: $t \in K$

Because φ^N is strict alphabetic, it holds

$$
(\varphi^N)^{-1}(a_t) = \{b_t \in \Sigma_t | \varphi(b) = a\},\
$$

and therewith

$$
\Pi_K^N((\varphi^N)^{-1}(a_t)) = \{b_t \in \Sigma_t | \varphi(b) = a\}.
$$

 $\bar{\Pi}_{K}^{N}(a_{t}) = a_{t}$ and therewith

$$
(\varphi^K)^{-1}(\bar{\Pi}^N_K(a_t)) = \{b_t \in \Sigma_t | \varphi(b) = a\},\
$$

because φ^K is strict alphabetic. This completes the proof of Lemma [9.](#page-6-6) \blacksquare

 \blacksquare

This completes the proof of Theorem [5.](#page-5-1)