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Theorem 1 (intersection theorem). Let I be a parameter
structure, BI an isomorphism structure for I, and T 6= ∅.
i) Let (LtI)I∈I for each t ∈ T be a monotonic parame-

terised system, then (
⋂
t∈T
LtI)I∈I is a monotonic pa-

rameterised system.
ii) Let (LtI)I∈I for each t ∈ T be a scalable system with

respect to BI , then (
⋂
t∈T
LtI)I∈I is a scalable system

with respect to BI .
iii) Let (LtI)I∈I for each t ∈ T be a self-similar mono-

tonic parameterised system, then (
⋂
t∈T
LtI)I∈I is a self-

similar monotonic parameterised system.

Proof of Theorem 1 (i)–(iii):
Proof of (i): Let (LtI)I∈I a monotonic parameterised
system for each t ∈ T , then LtI′ ⊂ L

t
I for t ∈ T , I,I ′ ∈ I,

and I ′ ⊂ I. This implies⋂
t∈T
LtI′ ⊂

⋂
t∈T
LtI .

So, (
⋂
t∈T
LtI)I∈I is a monotonic parameterised system.

Proof of (ii): Let (LtI)I∈I an scalable system with re-
spect to (B(I,K))(I,K)∈I×I for each t∈ T , then ιIK(LtI) =
LtK for t ∈ T , I, K ∈ I, and ι ∈ B(I,K).
Because all ιIK are isomorphisms,

ιIK(
⋂
t∈T
LtI) =

⋂
t∈T

ιIK(LtI) =
⋂
t∈T
LtK .

Therefore, (
⋂
t∈T
LtI)I∈I is a scalable system

with respect to (B(I,K))(I,K)∈I×I .
Proof of (iii): Let (LtI)I∈I a self-similar monotonic

parameterised system for each t ∈ T . For I,I ′ ∈ I with
I ′ ⊂ I holds

ΠII′(
⋂
t∈T
LtI)⊂

⋂
t∈T

ΠII′(L
t
I) =

⋂
t∈T
LtI′ ⊂

⋂
t∈T
LtI . (1)

Because
⋂
t∈T
LtI′ ⊂ Σ∗I′ holds

ΠII′(
⋂
t∈T
LtI′) =

⋂
t∈T
LtI′ .

Together with the second inclusion from (1) it follows⋂
t∈T
LtI′ ⊂ΠII′(

⋂
t∈T
LtI).

Because of the first part of (1) now holds

ΠII′(
⋂
t∈T
LtI) =

⋂
t∈T
LtI′ .

Therefore,
(
⋂
t∈T
LtI)I∈I

is a self-similar monotonic parameterised system with
respect to I.

Theorem 2 (simplest well-behaved scalable systems).
(L̇(L)I)I∈I is a well-behaved scalable system with respect
to each isomorphism structure for I based on N and

L̇(L)I =
⋂
i∈N

(τ Ii )−1(L) for each I ∈ I.

The proof of Theorem 2 will be given in context of
influence structures because it consists of special cases of
more general results on influence structures (see 32).

Further requirements, which assure that
(L(L,EI ,V )I)I∈I are well-behaved scalable systems,
will be given with respect to EI , BI , L and V . This will
be prepared by some lemmata.

Lemma 1. Let EI := (E(t,I))(t,I)∈T×I be an influence
structure for I indexed by T , and let V ⊂ Σ∗. If

E(t,I ′) = E(t,I)∩ I ′ (2)

for each t ∈ T and I,I ′ ∈ I I ′ ⊂ I, then

((τE(t,I))−1(V ))I∈I

is a monotonic parameterised system for each t ∈ T , and
by the intersection theorem

(
⋂
t∈T

(τE(t,I))−1(V ))I∈I

is a monotonic parameterised system.



Proof: Let I ∈ I and t ∈ T . From the definitions
of influence homomorphisms and influence structures it
follows

τ IE(t,I)(ai) =
{
a | ai ∈ ΣE(t,I)
ε | ai ∈ ΣI \ΣE(t,I)

. (3)

For I ′ ⊂ I, I ′ ∈ I and ai ∈ ΣI′ then because of (2)

τ IE(t,I)(ai) =
{
a | ai ∈ ΣE(t,I)∩ΣI′
ε | ai ∈ ΣI′ ∩ΣI \ΣE(t,I)

=
{
a | ai ∈ ΣE(t,I′)
ε | ai ∈ ΣI′ \ (ΣE(t,I)∩ΣI′)

=
{
a | ai ∈ ΣE(t,I′)
ε | ai ∈ ΣI′ \ΣE(t,I′)

= τ I
′

E(t,I′)(ai),

and therefore

(τ I
′

E(t,I′))
−1(V )⊂ (τ IE(t,I))

−1(V ) for V ⊂ Σ∗. (4)

So,
((τ IE(t,I))

−1(V ))I∈I (5)

is a monotonic parameterised system for each t ∈ T .

Example 1. Let I be a parameter structure based on N .
For I ∈ I and i ∈N let:

Ė(i,I) :=
{
{i} | i ∈ I
∅ | i ∈N \ I .

By the definition of parameter structure N 6= ∅. So

ĖI := (Ė(i,I))(i,I)∈N×I

defines an influence structure for I indexed by N . ĖI
satisfies (2) and by τ Ii = τ I{i} τ

I
i = τ I

Ė(i,I) for i ∈ N and
I ∈ I.
Now by Lemma 1 for V ⊂ Σ∗

((τ Ii )−1(V ))I∈I is a monotonic parameterised system
(6)

for each i ∈N .

For this special influence structure ĖI a stronger result
can be obtained.

Lemma 2. Let I be a parameter structure based on N and
ε ∈ L⊂ Σ∗. Then

((τ Ii )−1(L))I∈I

is a self-similar monotonic parameterised system for each
i ∈N , and by the intersection theorem

(
⋂
i∈N

(τ Ii )−1(L))I∈I

is a self-similar monotonic parameterised system.

Proof: On account of (6)

ΠII′((τ
I
i )−1(L)) = (τ I

′
i )−1(L)

has to be shown for I,I ′ ∈ I, I ′ ⊂ I, and i ∈N .

(6) implies (τ I′i )−1(L)⊂ (τ Ii )−1(L) and therefore,

(τ I
′
i )−1(L) = ΠII′((τ

I′
i )−1(L))⊂ΠII′((τ

I
i )−1(L)). (7)

It remains to show ΠII′((τ
I
i )−1(L))⊂ (τ I′i )−1(L).

Case 1. i /∈ I ′
Because of ε ∈ L and τ I′i (w) = ε for i /∈ I ′ and w ∈ Σ∗I′

it holds (τ I′i )−1(L) = Σ∗I′ and so

ΠII′((τ
I
i )−1(L))⊂ (τ I

′
i )−1(L) for i /∈ I ′. (8)

Case 2. i ∈ I ′
From definitions of ΠII′ , τ

I
i and τ I′i follows

τ Ii = τ I
′
i ◦ΠII′ for i ∈ I

′. (9)

For x∈ΠII′((τ
I
i )−1(L)) exists y ∈Σ∗I with τ Ii (y)∈L and

x= ΠII′(y). Because of (9) holds

τ I
′
i (x) = τ I

′
i (ΠII′(y)) = τ Ii (y) ∈ L,

hence, x ∈ (τ I′i )−1(L). Therefore,

ΠII′((τ
I
i )−1(L))⊂ (τ I

′
i )−1(L) for i ∈ I ′. (10)

Because of (8), (10) and (7) holds

ΠII′((τ
I
i )−1(L)) = (τ I

′
i )−1(L)

for I,I ′ ∈ I, I ′ ⊂ I and i ∈N .
Intersections of system behaviours play an important

role concerning uniformity of parameterisation. Therefore,
some general properties of intersections of families of sets
will be presented.

Let T be a set. A family f = (ft)t∈T with ft ∈ F for
each t ∈ T is formally equivalent to a function f : T → F
with ft := f(t).

Let M be a set. A family f = (ft)t∈T with ft ∈F =P(M)
for each t ∈ T is called a family of subsets of M .
Let now T 6= ∅ and f a family of subsets of M . The

intersection
⋂
t∈T

ft is defined by⋂
t∈T

ft = {m ∈M |m ∈ ft for each t ∈ T}. (11)

If f = g ◦h with h : T →H and g :H → F then⋂
t∈T

f(t) =
⋂

x∈h(T )
g(x). (12)

If especially f = h and g is the identity on F , then from
(12) follows ⋂

t∈T
f(t) =

⋂
x∈f(T )

x.

For a second family of sets f ′ : T ′ → F with f ′(T ′) =
f(T ) follows then ⋂

t∈T
f(t) =

⋂
t′∈T ′

f(t′).

In the following we will use family and function nota-
tions side by side.



Let f = (ft)t∈T a family of sets with f : T →F =P(M).
If T = T̊ ∪ T̂ with T̊ 6= ∅ and f(T̂ ) = {M}, then from (11)
follows ⋂

t∈T
f(t) =

⋂
t∈T̊

f(t). (13)

Let EI = (E(t,I))(t,I)∈T×I be an influence structure for
I indexed by T .

For each I ∈ I a family of sets

EI(I) := (E(t,I))t∈T
with E(t,I) = EI(I)(t) ∈ P(I) is defined, and it holds

EI(I) : T →P(I). (14)

From (12) it follows (with h= EI(I))⋂
t∈T

(τ IE(t,I))
−1(V ) =

⋂
x∈EI(I)(T )

(τ Ix)−1(V ) (15)

for each V ⊂ Σ∗ and I ∈ I.
For each I ∈ I holds τ I∅ (w) = ε for each w ∈ Σ∗I . It

follows,
(τ I∅ )−1(V ) = Σ∗I if ε ∈ V ⊂ Σ∗. (16)

Because of (12), (13), (15), and (16)⋂
t∈T

(τ IE(t,I))
−1(V ) =

⋂
x∈EI(I)(TI)

(τ Ix)−1(V )

=
⋂
t∈TI

(τ IE(t,I))
−1(V ) (17)

for each TI with ∅ 6= TI ⊂ T and EI(I)(T ) \ EI(I)(TI) ∈
{∅,{∅}} and ε ∈ V ⊂ Σ∗.

Each bijection ι : I → I ′ defines another bijection ῐ :
P(I)→P(I ′) by

ῐ(x) := {ι(y) ∈ I ′|y ∈ x} for each x ∈ P(I). (18)

Lemma 3. Let EI = (E(t,I))(t,I)∈T×I be an influ-
ence structure for I indexed by T , and let BI =
(B(I,I ′))(I,I′)∈I×I be an isomorphism structure for I. Let

ε ∈ V ⊂ Σ∗, and let (TK)K∈I be a family
with ∅ 6= TK ⊂ T and
EI(K)(T )\EI(K)(TK) ∈ {∅,{∅}} for each K ∈ I,
such that ῐ(EI(I)(TI)) = EI(I ′)(TI′)
for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′), (19)

then ⋂
t∈T

(τ IE(t,I))
−1(V ) =

⋂
t∈TI

(τ IE(t,I))
−1(V ) (20)

for each I ∈ I, and

ιII′ [
⋂
t∈T

(τ IE(t,I))
−1(V )] =

⋂
t∈T

(τ I
′

E(t,I′))
−1(V ) (21)

for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′).

Proof of (20): Because of (17) from assumption (19)
directly follows (20).

For the proof of (21) the following property of the
homomorphisms τ IK is needed:

Let ι : I→ I ′ a bijection and K ⊂ I, then τ I′ι(K) ◦ι
I
I′ = τ IK

and so
τ I
′

ι(K) = τ IK ◦ (ιII′)
−1. (22)

Proof of (22):
The elements of ΣI are of the form ai with i ∈ I and

a ∈ Σ. For these elements holds

τ IK(ai) =
{
a | i ∈K
ε | i ∈ I \K

=
{
a | ι(i) ∈ ι(K)
ε | ι(i) ∈ I ′ \ ι(K)

= τ I
′

ι(K)(aι(i)) = τ I
′

ι(K)(ι
I
I′(ai))

which proves (22).
Proof of (21): Because of (17) and (22)

ιII′ [
⋂
t∈T

(τ IE(t,I))
−1(V )]

= ιII′ [
⋂

x∈EI(I)(TI)
(τ Ix)−1(V )]

= ((ιII′)
−1)−1[

⋂
x∈EI(I)(TI)

(τ Ix)−1(V )]

=
⋂

x∈EI(I)(TI)
((ιII′)

−1)−1[(τ Ix)−1(V )]

=
⋂

x∈EI(I)(TI)
(τ Ix ◦ (ιII′)

−1)−1(V )

=
⋂

x∈EI(I)(TI)
(τ I
′

ι(x))
−1(V )

=
⋂

x∈EI(I)(TI)
(τ I
′

ῐ(x))
−1(V ). (23)

From (12) (with h= ῐ) and the assumption (19) follows⋂
x∈EI(I)(TI)

(τ I
′

ῐ(x))
−1(V ) =

⋂
x′∈ῐ(EI(I)(TI))

(τ I
′
x′ )
−1(V )

=
⋂

x′∈EI(I′)(T ′
I
)

(τ I
′
x′ )
−1(V ).

Furthermore, from (17) follows⋂
x′∈EI(I′)(T ′

I
)

(τ I
′
x′ )
−1(V ) =

⋂
t∈T

(τ I
′

E(t,I′))
−1(V ). (24)

(23) - (24) prove (21).
The case T =N , where I is based on N , allows a simpler

sufficient condition for (20) and (21).

Lemma 4. Let I be a parameter structure based on
N , EI = (E(n,I))(n,I)∈N×I be an influence structure for
I, and let BI = (B(I,I ′))(I,I′)∈I×I be an isomorphism



structure for I.

Let ε ∈ V ⊂ Σ∗, (25a)
for each I ∈ I and n ∈N let E(n,I) = ∅,
or it exists an in ∈ I with E(n,I) = E(in, I), and (25b)
for each (I,I ′) ∈ I ×I, ι ∈ B(I,I ′) and i ∈ I holds
ι(E(i,I)) = E(ι(i), I ′). (25c)

Then ⋂
n∈N

(τ IE(n,I))
−1(V ) =

⋂
n∈I

(τ IE(n,I))
−1(V ) (26)

for each I ∈ I, and

ιII′ [
⋂
n∈N

(τ IE(n,I))
−1(V )] =

⋂
n∈N

(τ I
′

E(n,I′))
−1(V ) (27)

for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′).

Proof: From (25b) follows EI(I)(N) = EI(I)(I) or
EI(I)(N) = EI(I)(I) ·∪{∅}, so

EI(I)(N)\EI(I)(I) ∈ {∅,{∅}} for each I ∈ I. (28)

From (25c) follows

ῐ(EI(I)(I))⊂ EI(I ′)(I ′). (29)

Because ι : I → I ′ is a bijection, for each i′ ∈ I ′ exists
an i ∈ I with ι(i) = i′. Because of (25c) holds ῐ(E(i,I)) =
E(i′, I ′), where E(i,I) ∈ EI(I)(I). From this follows

EI(I ′)(I ′)⊂ ῐ(EI(I)(I)). (30)

Because of (28) - (30), with T =N and (TI)I∈I = (I)I∈I ,

(25a)− (25c) implies (19).

Example 2 (Example 1 (continued)). Let I be a param-
eter structure based on N and BI = (B(I,I ′))(I,I′)∈I×I be
an isomorphism structure for I. Then ĖI satisfies (25b)
and (25c).

So for ε ∈ L⊂ Σ∗ Lemma 4 implies⋂
n∈N

(τ In)−1(L) =
⋂
n∈I

(τ In)−1(L) for each I ∈ I and

ιII′ [
⋂
n∈N

(τ In)−1(L)] =
⋂
n∈N

(τ I
′
n )−1(L) (31)

for each (I,I ′) ∈ I ×I and ι ∈ B(I,I ′).

Now Lemma 2 together with (31) proves Theorem 2.
(32)

Because of τ In = τ I
Ė(n,I) for I ∈ I and n ∈ N , (31) and

the definitions of (L̇(L)I)I∈I and (L(L,EI ,V )I)I∈I imply

L̇(L)I =
⋂
n∈I

(τ In)−1(L) =
⋂
n∈I

(τ In)−1(L)∩
⋂
n∈I

(τ In)−1(V )

= L̇(L)I ∩
⋂
n∈N

(τ In)−1(V )

= L̇(L)I ∩
⋂
n∈N

(τ I
Ė(n,I))

−1(V )

= L(L, ĖI ,V )I (33)

for I ∈ I and V ⊃ L.
(33) gives a representation of (L̇(L)I)I∈I in terms of

(L(L,EI ,V )I)I∈I .
For the following theorems please remember that by the

general definition of L(L,EI ,V )I it is assumed that ∅ 6=L⊂
V and L,V are prefix closed. This implies ε ∈ L⊂ V .

Lemma 5. Let I be a parameter structure, EI an influence
structure for I indexed by T and BI an isomorphism
structure for I.
Assuming (2) and (19), then

(L(L,EI ,V )I)I∈I

is a scalable systems with respect to BI .

It holds L(L,EI ,V )I = L̇(L)I ∩
⋂
n∈TI

(τ IE(n,I))
−1(V )

for each I ∈ I.

Proof: By Theorem 2, (L̇(L)I)I∈I is a scalable system
with respect to BI . By Lemma 1 and 3 (21)

(
⋂
t∈T

(τ IE(t,I))
−1(V ))I∈I

is a scalable system with respect to BI too. Now part
(ii) of the intersection theorem proves (L(L,EI ,V )I)I∈I
to be a scalable system with respect to BI . Lemma 3 (20)
completes the proof of Lemma 5.

Using Lemma 4 instead of Lemma 3 proves the follow-
ing.

Theorem 3 (construction condition for scalable systems).
By the assumptions of Lemma 4 and (2) with T = N ,
(L(L,EI ,V )I)I∈I is a scalable system with respect to BI .
It holds L(L,EI ,V )I = L̇(L)I ∩

⋂
n∈I

(τ IE(n,I))
−1(V )).

Remark 1. It can be shown that in SP(L,V ) N can be
replaced by each countable infinite set. Let therefore N ′ be
another set and ι : N→ N ′ a bijection. ιNN ′ : Σ∗N → Σ∗N ′
is the isomorphism defined as in the definition of isomor-
phism structure. It now holds

ΘN = ΘN ′ ◦ ιNN ′ and τ
N
n = τN

′

ι(n) ◦ ι
N
N ′ (34)

for each n ∈N. Furthermore,

ιNN ′ ◦ΠNK = ΠN
′

ι(K) ◦ ι
N
N ′ (35)



for each K ⊂N. From (34) and commutativity of intersec-
tion now

(
⋂
n∈N

(τNn )−1(L))∩ (ΘN)−1(V ) =

= (ιNN ′)
−1[(

⋂
n∈N

(τN
′

ι(n))
−1(L))∩ (ΘN ′)−1(V )]

= (ιNN ′)
−1[(

⋂
n′∈N ′

(τN
′

n′ )−1(L))∩ (ΘN ′)−1(V )]. (36)

By (35),

ΠNK ◦ (ιNN ′)
−1 = (ιNN ′)

−1 ◦ΠN
′

ι(K). (37)

Because of (36) and (37)

ΠNK [(
⋂
n∈N

(τNn )−1(L))∩ (ΘN)−1(V )] =

= (ιNN ′)
−1(ΠN

′

ι(K)[(
⋂

n′∈N ′
(τN

′
n′ )−1(L))∩ (ΘN ′)−1(V )]).

(38)
From

ΠNK [(
⋂
n∈N

(τNn )−1(L))∩ (ΘN)−1(V )]⊂ (ΘN)−1(V )

now follows

ΠN
′

ι(K)[(
⋂

n′∈N ′
(τN

′
n′ )−1(L))∩ (ΘN ′)−1(V )]

⊂ ιNN ′((Θ
N)−1(V )). (39)

Because of (34) ΘN ◦ (ιNN ′)
−1 = ΘN ′ and so

(ΘN ′)−1(V ) = ιNN ′((Θ
N)−1(V )).

Therefore, from (39) follows

ΠN
′

ι(K)[(
⋂

n′∈N ′
(τN

′
n′ )−1(L))∩ (ΘN ′)−1(V )]⊂ (ΘN ′)−1(V ).

(40)
Because for each ∅ 6= K′ ⊂ N ′ it exists an ∅ 6= K ⊂ N

with K′ = ι(K), by SP(L,V ), we get for each ∅ 6= K ⊂N
a corresponding inclusion with N ′ replacing N and K′ for
K.

Lemma 6. The assumptions of Lemma 1 and Lemma 2
together with SP(L,V ) imply that (X(L,V,t)I)I∈I with

X(L,V,t)I :=
⋂
n∈N

(τ In)−1(L)∩ (τ IE(t,I))
−1(V )

is a self-similar monotonic parameterised system for each
t ∈ T .

Proof: By Lemma 1 and Lemma 2,
((τ IE(t,I))

−1(V ))I∈I and (
⋂
n∈N

(τ In)−1(L))I∈I are

monotonic parameterised systems. So by the intersection
theorem (X(L,V,t)I)I∈I is a monotonic parameterised
system for each t ∈ T . Therefore

X(L,V,t)I′ = ΠII′(X(L,V,t)I′)⊂ΠII′(X(L,V,t)I)

for each I,I ′ ∈ I with I ′ ⊂ I. So the proof of self-similarity
can be reduced to the proof of

ΠII′(X(L,V,t)I)⊂X(L,V,t)I′ (41)

for each t ∈ T and I,I ′ ∈ I with I ′ ⊂ I.
Because by Lemma 2

(
⋂
n∈N

(τ In)−1(L))I∈I

is self-similar, it holds

ΠII′(X(L,V,t)I)⊂ΠII′(
⋂
n∈N

(τ In)−1(L)) =
⋂
n∈N

(τ In)−1(L).

So the proof of (41) can be reduced to the proof of

ΠII′ [
⋂
n∈N

(τ In)−1(L)∩ (τ IE(t,I))
−1(V )]⊂ (τ I

′

E(t,I′))
−1(V )

(42)
for each t ∈ T and I,I ′ ∈ I with I ′ ⊂ I.
For each w ∈ (

⋂
n∈N

(τ In)−1(L))∩ (τ IE(t,I))
−1(V ) exists a

r ∈N and ui ∈ Σ∗E(t,I) for 1≤ i≤ r and vi ∈ Σ∗I\E(t,I) for
1≤ i≤ r with w = u1v1u2v2 . . .urvr.
Note that Σ∅ := ∅ and ∅∗ = {ε}.
Because u1u2 . . .ur ∈ Σ∗E(t,I) and v1v2 . . .vr ∈ Σ∗I\E(t,I)
holds

ΘN (u1u2 . . .ur) = τ IE(t,I)(u1u2 . . .ur)
= τ IE(t,I)(w) ∈ V. (43)

With the same argumentation holds

τNn (u1u2 . . .ur) = τ In(u1u2 . . .ur) = τ In(w) ∈ L (44)

for n ∈ E(t,I) and

τNn (u1u2 . . .ur) = ε ∈ L (45)

for n ∈N \E(t,I). With (43) - (45) now

u1u2 . . .ur ∈ (
⋂
n∈N

(τNn )−1(L))∩ (ΘN )−1(V ),

and on behalf of precondition SP(L,V ) holds

ΠNI′ (u1u2 . . .ur) =ΠE(t,I)
I′∩E(t,I)(u1u2 . . .ur)

∈ Σ∗I′∩E(t,I)∩ (ΘN )−1(V ). (46)

Furthermore,

ΠII′(w) =ΠII′(u1v1u2v2 . . .urvr)

=ΠE(t,I)
I′∩E(t,I)(u1)ΠI\E(t,I)

I′\E(t,I)(v1) . . .

ΠE(t,I)
I′∩E(t,I)(ur)Π

I\E(t,I)
I′\E(t,I)(vr). (47)

Because of (2), E(t,I ′) ⊂ E(t,I) and so I ′ \E(t,I) ⊂
I ′ \E(t,I ′) and thus

τ I
′

E(t,I′)(Π
I\E(t,I)
I′\E(t,I))(vi) = ε

for 1≤ i≤ r. With (2) and (47) it follows

τ I
′

E(t,I′)(Π
I
I′(w)) = τ I

′

E(t,I′)(Π
E(t,I)
E(t,I′)(u1 . . .ur)). (48)



Because τ I′E(t,I′)(x) = ΘN (x) for each x ∈ Σ∗E(t,I′) now on
behalf of (48), (2), and (46)

τ I
′

E(t,I′)(Π
I
I′(w)) = ΘN (ΠE(t,I)

E(t,I′)(u1 . . .ur)) ∈ V,

and thus ΠII′(w) ∈ (τ I′E(t,I′))
−1(V ). This proves (42) and

completes the proof of Lemma 6.
Because of the idempotence of intersection⋂

n∈N
(τ In)−1(L)∩

⋂
t∈T

(τ IE(t,I))
−1(V )

=
⋂
t∈T

[
⋂
n∈N

(τ In)−1(L)∩ (τ IE(t,I))
−1(V )].

Now the intersection theorem and Lemma 6 imply

Lemma 7. If SP(L,V ), then by the assumptions of
Lemma 1 and 2

[
⋂
n∈N

(τ In)−1(L)∩
⋂
t∈T

(τ IE(t,I))
−1(V )]I∈I

is a self-similar monotonic parameterised system.

Combining Lemma 7 with Lemma 5 or Theorem 3 imply

Theorem 4 (construction condition for well-behaved
scalable systems). By the assumptions of Lemma 5 or
Theorem 3 together with SP(L,V )

(L(L,EI ,V )I)I∈I
is a well-behaved scalable system.

Theorem 5 (inverse abstraction theorem). Let ϕ : Σ∗→
Φ∗ be an alphabetic homomorphism and W,X ⊂ Φ∗, then

SP(W,X) implies SP(ϕ−1(W ),ϕ−1(X)).

Proof of Theorem 5:
Let K be a non-empty set. Each alphabetic homomor-
phism ϕ : Σ∗ → Φ∗ defines a homomorphism ϕK : Σ∗K →
Φ∗K by

ϕK(an) := (ϕ(a))n for an ∈ ΣK , where (ε)n = ε. (49)

If τ̄Kn : Φ∗K → Φ and Θ̄K : Φ∗K → Φ are defined analogous
to τKn and ΘK , then

ϕ◦ τKn = τ̄Kn ◦ϕK , and ϕ◦ΘK = Θ̄K ◦ϕK . (50)

Let now N be an infinite countable set. Because of (50),
for W,X ⊂ Φ∗

(
⋂
n∈N

(τNn )−1(ϕ−1(W )))∩ (ΘN )−1(ϕ−1(X))

= (ϕN )−1[(
⋂
n∈N

(τ̄Nn )−1(W ))∩ (Θ̄N )−1(X)]. (51)

Because of ϕK(w) = ϕN (w) for w ∈ Σ∗K ⊂ Σ∗N and ∅ 6=
K ⊂N

(ϕK)−1(Z)⊂ (ϕN )−1(Z) for Z ⊂ Φ∗K . (52)

If now SP(W,X), and

ΠNK [(ϕN )−1(Y )] = (ϕK)−1(Π̄NK [Y ]) (53)

for Y ⊂ Φ∗N and ∅ 6= K ⊂ N , where Π̄NK : Φ∗N → Φ∗K is
defined analogous to ΠNK , then follows (with (50) - (53))

ΠNK [(
⋂
n∈N

(τNn )−1(ϕ−1(W )))∩ (ΘN )−1(ϕ−1(X))]

= (ϕK)−1(Π̄NK [(
⋂
n∈N

(τ̄Nn )−1(W ))∩ (Θ̄N )−1(X)])

⊂ (ϕK)−1((Θ̄N )−1(X))⊂ (ϕN )−1((Θ̄N )−1(X))
= (ΘN )−1(ϕ−1(X)). (54)

With (54)

SP(ϕ−1(W ),ϕ−1(X)) follows from SP(W,X), (55)

if (53) holds.
It remains to show (53). For the proof of (53) it is

sufficient to prove

ΠNK((ϕN )−1(y) = (ϕK)−1(Π̄NK(y)) (56)

for each y ∈ Φ∗N , because of

ΠNK((ϕN )−1(Y ) =
⋃
y∈Y

ΠNK((ϕN )−1(y))

and
(ϕK)−1(Π̄NK(Y )) =

⋃
y∈Y

(ϕK)−1(Π̄NK(y)).

Here, for f :A→B and b ∈B we use the convention

f−1(b) = f−1({b}).

With Y = {y} (56) is also necessary for (53), and so it
is equivalent to (53).

Definition 1 ((general) projection). For arbitrary alpha-
bets ∆ and ∆′ with ∆′ ⊂∆ general projections π∆

∆′ : ∆∗→
∆′∗ are defined by

π∆
∆′(a) :=

{
a | a ∈∆′
ε | a ∈∆\∆′ . (57)

In this terminology the projections

ΠNK : Σ∗N → Σ∗K and Π̄NK : Φ∗N → Φ∗K
considered until now are special cases, which we call
parameter-projections. It holds

ΠNK = πΣN
ΣK

and Π̄NK = πΦN
ΦK

. (58)

Because of the different notations, in general we just use
the term projection for both cases.
We now consider the equation (56) for the special case,

where ϕ : Σ∗ → Φ∗ is a projection, that is ϕ = πΣ
Φ with

Φ ⊂ Σ. In this case also ϕN : Σ∗N → Φ∗N is a projection,
with

ϕN = πΣN
ΦN

. (59)

Lemma 8 (projection-lemma).
Let ∆ be an alphabet, ∆′ ⊂∆, Γ⊂∆ and Γ′ = ∆′∩Γ, then

π∆
∆′((π

∆
Γ )−1(y)) = (π∆′

Γ′ )
−1(π∆

∆′(y))



for each y ∈ Γ∗.

Proof: Let y ∈ Γ∗. We show

π∆′
Γ′ (π

∆
∆′(z)) = π∆

∆′(y) for each z ∈ (π∆
Γ )−1(y) (60)

and we show that

for each u ∈ (π∆′
Γ′ )
−1(π∆

∆′(y)) there exists a
v ∈ (π∆

Γ )−1(y) such that π∆
∆′(v) = u. (61)

From (60) it follows that

π∆
∆′((π

∆
Γ )−1(y))⊂ (π∆′

Γ′ )
−1(π∆

∆′(y))

and from (61) it follows that

(π∆′
Γ′ )
−1(π∆

∆′(y))⊂ π∆
∆′((π

∆
Γ )−1(y)),

which in turn proves Lemma 8.
Proof of (60): By definition of π∆

Γ , π∆′
Γ′ and π∆

∆′ follows

π∆′
Γ′ (π

∆
∆′(z)) = π∆

∆′(π
∆
Γ (z))

for each z ∈∆∗ and therewith (60).
Proof of (61) by induction on y ∈ Γ∗:

Induction base. Let y = ε, then u ∈ (∆′ \Γ′)∗ for each u ∈
(π∆′

Γ′ )
−1(π∆

∆′(y)). From this follows

π∆
∆′(v) = u with v := u ∈ (π∆

Γ )−1(ε).

Induction step. Let y = ẙŷ with ẙ ∈ Γ∗ and ŷ ∈ Γ.
Case 1: ŷ ∈ Γ\Γ′ = Γ∩ (∆\∆′)
Then

(π∆′
Γ′ )
−1(π∆

∆′(y)) = (π∆′
Γ′ )
−1(π∆

∆′(ẙ)).

By induction hypothesis then for each u∈ (π∆′
Γ′ )
−1(π∆

∆′(y))
it exists v̊ ∈ (π∆

Γ )−1(ẙ) such that π∆
∆′ (̊v) = u.

With v := v̊ŷ holds π∆
Γ (̊vŷ) = ẙŷ = y and hence

v ∈ (π∆
Γ )−1(y) and π∆

∆′(v) = π∆
∆′ (̊v) = u.

Case 2: ŷ ∈ Γ′ ⊂∆′
Then π∆

∆′(y) = π∆
∆′(ẙ)ŷ. Therefore, each u ∈

(π∆′
Γ′ )
−1(π∆

∆′(y)) can be departed into u = ůŷû with
ů ∈ (π∆′

Γ′ )
−1(π∆

∆′(ẙ)) and û ∈ (∆′ \Γ′)∗.
By induction hypothesis then exists v̊ ∈ (π∆

Γ )−1(ẙ) such
that π∆

∆′ (̊v) = ů.
With v := v̊ŷû holds π∆

Γ (̊vŷû) = ẙŷ = y and hence

v ∈ (π∆
Γ )−1(y) and π∆

∆′(v) = π∆
∆′ (̊v)ŷû= ůŷû= u.

This completes the proof of (61).
For y ∈ Γ∗ holds

π∆
∆′(y) = πΓ

∆′∩Γ(y) = πΓ
Γ′(y).

Therewith, from Lemma 8 follows

π∆
∆′((π

∆
Γ )−1(y)) = (π∆′

Γ′ )
−1(πΓ

Γ′(y)) for each y ∈ Γ∗. (62)

For ∅ 6=K ⊂N,Φ⊂Σ,∆ := ΣN ,∆′ := ΣK , and Γ := ΦN
holds Γ′ = ∆′∩Γ = ΦK .

Assuming ϕ= πΣ
Φ , which implies ϕK = πΣK

ΦK
, then from

(62) (with (58) and (59)), follows

ΠNK((ϕN )−1(y)) = (ϕK)−1(Π̄NK(y))

for y ∈ Φ∗N , and so (56). With this,

premise (53) is fulfilled for (55), when ϕ is a projection,
(63)

which proves Theorem 5 for projections.

Definition 2 (strict alphabetic homomorphism). Let Σ,
Φ alphabets, and ϕ : Σ∗→Φ∗ a homomorphism. Then ϕ is
called alphabetic, if ϕ(Σ)⊂ Φ∪{ε}, and ϕ is called strict
alphabetic, if ϕ(Σ)⊂ Φ.

Each alphabetic homomorphism ϕ : Σ∗ → Φ∗ is the
composition of a projection with a strict alphabetic ho-
momorphism, more precisely,

ϕ= ϕS ◦πΣ
ϕ−1(Φ)∩Σ, (64)

where ϕS : (ϕ−1(Φ)∩Σ)∗ → Φ∗ is the strict alphabetic
homomorphism defined by

ϕS(a) := ϕ(a) for a ∈ ϕ−1(Φ)∩Σ.

For W,X ⊂Φ∗ and ϕ : Σ∗→Φ∗ alphabetic (64) implies

ϕ−1(W ) =(πΣ
ϕ−1(Φ)∩Σ)−1((ϕS)−1(W )) and

ϕ−1(X) =(πΣ
ϕ−1(Φ)∩Σ)−1((ϕS)−1(X)). (65)

Now with (63) and (65) it remains to prove Theorem 5
for strict alphabetic homomorphisms. This will be done
by Lemma 9, which proves (56) for strict alphabetic
homomorphisms.

Lemma 9. Let ϕ : Σ∗→ Φ∗ be a strict alphabetic homo-
morphism, then for all y ∈ Φ∗N and ∅ 6=K ⊂N holds

ΠNK((ϕN )−1(y)) = (ϕK)−1(Π̄NK(y)).

Proof: Proof by induction on y.
Induction basis: y = ε
Because ϕN is strict alphabetic

(ϕN )−1(ε) = {ε} and so ΠNK((ϕN )−1(ε)) = {ε}.

For the same reason

(ϕK)−1(Π̄NK(ε)) = (ϕK)−1(ε) = {ε}.

Induction step: Let y = y′at with at ∈ ΦN , where a ∈ Φ
and t ∈N . Because ϕN is alphabetic, it holds

(ϕN )−1(y′at) = ((ϕN )−1(y′))((ϕN )−1(at)),

and so

ΠNK((ϕN )−1(y′at)) = ΠNK((ϕN )−1(y′))ΠNK((ϕN )−1(at)).

Also holds

(ϕK)−1(Π̄NK(y′at)) = (ϕK)−1(Π̄NK(y′))(ϕK)−1(Π̄NK(at)).



According to the induction hypothesis, it holds

ΠNK((ϕN )−1(y′)) = (ϕK)−1(Π̄NK(y′)).

Therefore, it remains to show

ΠNK((ϕN )−1(at)) = (ϕK)−1(Π̄NK(at)).

Case 1: t /∈K
Because ϕN is strict alphabetic, it holds (ϕN )−1(at)⊂Σt,
so

ΠNK((ϕN )−1(at)) = {ε}.

Additionally holds Π̄NK(at) = ε, and therewith

(ϕK)−1(Π̄NK(at)) = {ε},

because ϕK is strict alphabetic.
Case 2: t ∈K

Because ϕN is strict alphabetic, it holds

(ϕN )−1(at) = {bt ∈ Σt|ϕ(b) = a},

and therewith

ΠNK((ϕN )−1(at)) = {bt ∈ Σt|ϕ(b) = a}.

Π̄NK(at) = at and therewith

(ϕK)−1(Π̄NK(at)) = {bt ∈ Σt|ϕ(b) = a},

because ϕK is strict alphabetic. This completes the proof
of Lemma 9.

This completes the proof of Theorem 5.


