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Behaviour Properties of Uniformly Parameterised
Cooperations

Peter Ochsenschlager and Roland Rieke
Fraunhofer-Institute for Secure Information Technology SIT

In this paper we consider safety and liveness properties, where possibilistic aspects of especially
liveness properties are captured by a modified satisfaction relation, called approximate satisfaction.
The systems in focus of this paper are uniformly parameterised cooperations. Such systems are
characterised by the composition of a set of identical components. These components interact in a
uniform manner described by the schedules of the partners. Such kind of interaction is typical for
scalable complex systems with cloud or grid structure. As a main result, a finite state verification
framework for uniformly parameterised behaviour properties is given. The keys to this framework
are structuring cooperations into phases and defining closed behaviours of systems. Finite state
semi-algorithms that are independent of the concrete parameter setting are presented to verify
behaviour properties of such uniformly parameterised cooperations.

Key Words: safety properties; possibilistic liveness properties; approximate satisfaction; uniformly
parameterised cooperations; uniformly parameterised behaviour properties; finite state verification
independent of the parameter settings

1. INTRODUCTION

The systems in focus of this paper are uniformly parameterised cooperations. Such
systems are characterised by (i) the composition of a set of identical components
(copies of a two-sided cooperation) and (ii) that these components “interact” in a
uniform manner (described by the schedules of the partners). Such kind of inter-
action is typical for scalable complex systems. As an example for such uniformly
parameterised systems of cooperations, e-commerce protocols can be considered.
In these protocols the two cooperation partners have to perform a certain kind of
financial transactions. As such a protocol should work for several partners in the
same manner, and the mechanism (schedule) to determine how one partner may
be involved in several cooperations is the same for each partner, the cooperation is
parameterised by the partners and the parameterisation should be uniform w.r.t.
the partners.

As a main result of the work presented, a finite state verification framework for
uniformly parameterised behaviour properties of cooperations is given. To capture
possibilistic aspects of especially liveness properties a modified satisfaction relation
is used. For safety properties this relation, which is called approximate satisfac-
tion, is equivalent to the usual one. The keys to this framework are structuring
cooperations into phases and defining closed behaviours of systems. In that frame-
work “completion of phases strategies” and corresponding “success conditions” are
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4 . P. Ochsenschlager and R. Rieke

formalised which produce finite state semi-algorithms that are independent of the
concrete parameter setting. These algorithms are used to verify behaviour proper-
ties of uniformly parameterised cooperations under certain regularity restrictions.

The subsequent paper is structured as follows. In Sect. 2 uniform parameteri-
sations of two-sided cooperations in terms of formal language theory is formalised
and a kind of self-similarity is considered. In this self-similarity concept, when only
actions of some selected partners are considered, the complex system of all partners
behaves like the smaller subsystem of the selected partners. Section 3 introduces the
concept of uniformly parameterised behaviour properties of cooperations. The con-
cept of structuring cooperations into phases given in Sect. 4 enables completion of
phases strategies which are presented in Sect. 5. Consistent with this, correspond-
ing success conditions are formalised which produce finite state semi-algorithms to
verify behaviour properties of uniformly parameterised cooperations.

2. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally described by the set of
its possible sequences of actions. Therefore L C ¥* holds where ¥ is the set
of all actions of the system, and ¥* (free monoid over ¥) is the set of all finite
sequences of elements of ¥ (words), including the empty sequence denoted by e.
Yt = ¥*\ {e}. Subsets of X* are called formal languages [Sakarovitch 2009].
Words can be composed: if u and v are words, then wv is also a word. This
operation is called the concatenation; especially eu = ue = u. Concatenation of
formal languages U,V C ¥* are defined by UV := {uwv € ¥*|lu € U and v € V}. A
word w is called a prefiz of a word v if there is a word x such that v = ux. The set
of all prefixes of a word u is denoted by pre(u); € € pre(u) holds for every word w.
The set of possible continuations of a word v € L is formalised by the left quotient
u (L) = {x € S*|juz € L}.

Infinite words over X are called w-words [Perrin and Pin 2004]. The set of all
infinite words over X is denoted ¥“. An w-language L over X is a subset of 3¢.
For v € ¥* and v € X% the left concatenation uv € 3¢ is defined. It is also defined
forUCX*and V C X% by UV :={uv € ¥¥lu € U and v € V}.

For an w-word w the prefix set is given by the formal language pre(w) which
contains every finite prefix of w. The prefix set of an w-language L C X¢ is
accordingly given by pre(L) = {u € X*| it exist v € ¥¢ with wv € L}. For M C
3* the w-power M C X¢ is the set of all “infinite concatenations” of arbitrary
elements of M. More formally, the set of all infinite words over ¥ is defined by
¥ = {(ai)ien|a; € T for each ¢ € N}, where IN denotes the set of natural numbers.
On X% a left concatenation with words from ¥* is defined. Let u = by ...b; € X*
with £ > 0 and b; € ¥ for 1 < j < k and w = (a;)ien € ¥ with a; € X for
all ¢ € IN, then uw = (z;);env € ¥ with z; = b; for 1 < j < k and z; = a;_p
for k < j. For w € ¥¥ the prefix set pre(w) C ¥* is defined by pre(w) = {u €
¥*| it exists v € X with uv = w}. For L C ¥* the w-language L¥ C X is defined
by L¥ = {(a;)ien € X¥| it exists a strict monotonically increasing function f :
N — IN with a;...apq) € L and afgy41 ... ap441) € L foreach i € N} . f:IN —
IN is called strict monotonically increasing if f(i) < f(i + 1) for each 7 € IN.

Formal languages which describe system behaviour have the characteristic that
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Phase Based Cooperations . 5

pre(u) C L holds for every word v € L. Such languages are called prefiz closed.
System behaviour is thus described by prefix closed formal languages.

Different formal models of the same system are partially ordered with respect
to different levels of abstraction. Formally, abstractions are described by so called
alphabetic language homomorphisms. These are mappings h* : ¥* — X'* with
h*(zy) = h*(z)h*(y) , h*(e) = e and h*(2) C X'U{e}. So they are uniquely defined
by corresponding mappings h : ¥ — ¥’ U{e}. In the following we denote both the
mapping h and the homomorphism hA* by h. Inverse homomorphism are denoted
by h=1. Let L be a language over the alphabet ¥'. Then h~!(L) is the set of words
w € ¥* such that h(w) € L. In this paper we consider a lot of alphabetic language
homomorphisms. So for simplicity we tacitly assume that a mapping between free
monoids is an alphabetic language homomorphism if nothing contrary is stated.

To describe a two-sided cooperation, let ¥ = ® U I where @ is the set of actions
of cooperation partner F' and I is the set of actions of cooperation partner G. Now
a prefix closed language L C (® U I')* formally defines a two-sided cooperation.

Example 1. Let ® = {f,f;} and T = {g;,gs} and hence ¥ = {f,f;, g, 8s}. An
example for a cooperation L C ¥* is now given by the automaton in Fig. 1. It
describes a simple handshake between F (client) and G (server), where a client
may perform the actions fs (send a request), f, (receive a result) and a server may
perform the corresponding actions g, (receive a request) and gs (send the result).

Please note that in the following we will denote initial states by a short incoming
arrow and final states by double circles. In this automaton all states are final states,
since L is prefix closed.

+©i©/©

Fig. 1. Automaton for 1-1-cooperation L

For parameter sets I, K and (i, k) € I x K let ¥;; denote pairwise disjoint copies

of X. The elements of ¥;; are denoted by a;; and Xk := U Yik- The index
i,k)EIx K
ik describes the bijection a <> a;; for a € ¥ and a;; € (Eik. Now Lrx C ik
(prefix-closed) describes a parameterised system. To avoid pathological cases we
generally assume parameter and index sets to be non empty.
For a cooperation between one partner of type F' with two partners of type G in
example 1 let

Q1yq1,2y ={fs11s fri1s fs12, fria}s
Ciiyq1,2) ={8r115 85115 8r12, 8s12} and
iz =Py Y e

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



6 . P. Ochsenschlager and R. Rieke

A

Fig. 2. Automaton for 1-2-cooperation Lr1y(1,2)

8s12

A 1-2-cooperation, where each pair of partners cooperates restricted by L and
each partner has to finish the handshake it just is involved in before entering a
new one, is now given (by reachability analysis) by the automaton in Fig. 2 for
Li1y{1,2y- It shows that one after another client 1 runs a handshake either with
server 1 or with server 2. Figure 3 in contrast depicts an automaton for a 2-1-
cooperation Ly 23(1} with the same overall number of partners involved but two of
type F' and one partner of type G. Figure 3 is more complex than Fig. 2 because
client 1 and client 2 may start a handshake independently of each other, but server
1 handles these handshakes one after another. A 3-3-cooperation with the same
simple behaviour of partners already requires 916 states and 3168 state transitions
(computed by the SH verification tool [Ochsenschldger et al. 2000]).

r2l

fs21

Fig. 3. Automaton for the 2-1-cooperation L1 21(1}

For (i,k) € I x K, let 7} : $%,. — ¥* with
K a | Ars € Eik
T a = .
ik ( rs) {El aTSEZIK\Zik
For uniformly parameterised systems Ljx we generally want to have
IK\—1
Likc () ((=7HD)
(i,k)EIX K
Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations . 7

because from an abstracting point of view, where only the actions of a specific ¥
are considered, the complex system Lk is restricted by L.

In addition to this inclusion Lk is defined by local schedules that determine
how each “version of a partner” can participate in “different cooperations”. More
precisely, let SF C ®*, SG C I'* be prefix closed.

For (i,k) € I x K, let p!% : &%, — ®* and /X : ©%, — T'* with

1K _Jal as €k
;" (ars) = { e ars € Six \ gy and

1K _Jalas €Ty
Vi (ars) { el aps € EIK\FI{k} )

where @7 and [';x are defined correspondingly to k.

Definition 1 (Uniformly parameterised cooperation Lk ).
Let I, K be finite parameter sets, then

Lik= () &)

(i,k)eIX K
N (eF) T SF)Y N () () 7H(86)
il keK
By this definition

Loyoy = @YD)

11} — 11}y —
N M SE) N (T (s ).
As we want L1} being isomorphic to L by the isomorphism

141 * *
771[1}{ ¥ : 2{1}{1} -2

we additionally need
(el D) € (1) 7 (5F) and
11— 11} —
(i @) € s ).
This is equivalent to me(L) C SF and 7p(L) C SG, where 1o : ¥* — ®* and
7 %% — I'* are defined by

alaced alael
7RI)((I):{eiaeI‘ andﬁr(a):{e}ae@‘

So we complete Def. 1 by the additional conditions
we(L) C SF and 7p(L) C SG.

Schedules SF and SG that fit to the cooperations given in Example 1 are depicted
in Figs. 4(a) and 4(b). Here we have ng(L) = SF and 7 (L) = SG.

The system Ljx of cooperations is a typical example of a compler system. It
consists of several identical components (copies of the two-sided cooperation L),
which “interact” in a uniform manner (described by the schedules SF' and SG and
by the homomorphisms ¢! and 'y,gK ).

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



8 . P. Ochsenschlager and R. Rieke

fs g
-0_0 -0 0
f gs
(a) Schedule SF (b) Schedule SG

Fig. 4. Automata SF and SG for the schedules SF' and SG

Remark 1. It is easy to see that Lix is isomorphic to Ly i if I is isomorphic to
I' and K is isomorphic to K'. More precisely, let 1f, : T — I' and /&, : K — K’ be
bijections and let 5., : 5%, — S35 be defined by

IK -
Ly (agg) == @, (), (k) fora;x, € Xk

Then LI,I§</ is a isomorphism and t5., (L1r) = LI/K/ The set of all these isomor-
phisms 15, defined by corresponding bijections tt, and 1%, is denoted by T1%.,.

To illustrate the concepts of this paper, we consider the following example.

Example 2. We consider a system of servers, each of them managing a resource,
and clients, which want to use these resources. We assume that as a means to
enforce a given privacy policy a server has to manage its resource in such a way
that no client may access this resource during it is in use by another client (privacy
requirement ). This may be required to ensure anonymity in such a way that clients
and their actions on a resource cannot be linked by an observer.

We formalise this system at an abstract level, where a client may perform the
actions fy (send a request), f, (receive a permission) and f, (send a free-message),
and a server may perform the corresponding actions gy (receive a request), gy (send
a permission) and g, (receive a free-message). The possible sequences of actions of
a client resp. of a server are given by the automaton SF resp. SG. The automaton
L describes the 1-1-cooperation of one client and one server (see Fig. 5). These
automata define the client-server system L.

»0/ L& O D=0

) 1-1-cooperation L (b) Schedule SF ( ) Schedule SG

Fig. 5. Automata L, SF and SG for Example 2

By self-similary [Ochsenschlager and Rieke 2010; 2011] we formalise that for
I' c I and K’ C K from an abstracting point of view, where only the actions of

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations . 9

Yk are considered, the complex system Ljx behaves like the smaller subsystem
L k. Therefore we now consider special abstractions on L.

Definition 2 (Projection abstraction).
ForI' C I and K' C K let TILK ., S5, — 3%, ., with

€ XK

HI/I( a _ Qyg ‘ Ayg I'K

I'K ( rs) { e ‘ Grs € ZIK \ Z[’K’-
Definition 3 (Self-similarity).

A uniformly parameterised cooperation Lyy is called self-similar iff

TR (Lrx) = Lig: for each I' x K' € I x K.

Self-similarity is a generalisation of 7/X(Lrx) = L.

In [Ochsenschldger and Rieke 2010] a sufficient condition for self-similarity is
given (see appendix), which is based on deterministic computations in shuffle au-
tomata. Under certain regularity restrictions this condition can be verified by a
semi-algorithm. In the appendix we show that example 2 is self-similar.

3. UNIFORMLY PARAMETERISED BEHAVIOUR PROPERTIES

Usually behaviour properties of systems are divided into two classes: safety and
liveness properties [Alpern and Schneider 1985]. Intuitively a safety property stip-
ulates that “something bad does not happen” and a liveness property stipulates
that “something good eventually happens”.

In [Alpern and Schneider 1985] both classes, as well as system behaviour, are
formalised in terms of w-languages, because especially for liveness properties infinite
sequences of actions have to be considered.

Definition 4 (linear satisfaction). According to [Alpern and Schneider 1985], a
property E of a system is a subset of X¥. If S C X represents the behaviour of a
system, then S linearly satisfies E iff S C E.

In [Alpern and Schneider 1985] it is furthermore shown that each property E is
the intersection of a safety and a liveness property.

Safety properties E; C X¢ are of the form E, = ¥\ FX¥ with F C ¥*, where
F is the set of “bad things”.

Liveness properties E; C X% are characterised by pre(E;) = X*. A typical exam-
ple of a liveness property is

By = (2*M)® with 0 £ M c ¥ (1)

This FE; formalises that “always eventually a finite action sequence m € M hap-
pens”.

As we describe system behaviour by prefix closed languages B C ¥* we have to
“transform” B into an w-language to apply the framework of [Alpern and Schneider
1985]. This can be done by the Eilenberg-limit lim(B) [Perrin and Pin 2004].

For prefix closed languages B C ¥* their Eilenberg-limit is defined by

lim(B) := {w € ¥|pre(w) C B}.

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



10 . P. Ochsenschlager and R. Rieke

If B contains maximal words u (deadlocks), then these u are not “captured” by
lim(B). Formally the set max(B) of all maximal words of B is defined by
max(B) := {u € B| if v € B with u € pre(v) then v = u}.
Now, using a dummy action #, B can be unambiguously described by
B := BUmax(B)#* C ¥*, (2)

where # ¢ ¥ and ¥ := XU{#}. By this definition in 3 the maximal words of B
are continued by arbitrary many #’s. So B does not contain maximal words. By
this construction we now can assume that system behaviour is formalised by prefix
closed languages B C ¥*#* C ©* without maximal words, and the corresponding
infinite system behaviour S C ¢ is given by S := lim(B).

For such an S and safety properties

E, = %%\ FY¥ with F c &*

it holds
S C E,iff SNFX® = iff pre(S)NF =0 iff BN F = 0. (3)
If FC¥* then BAF =0iff BAF =0. So
SCE,if BNF =0 for F Cc X", (4)

Let h : ¥* — ¥'* be an alphabetic homomorphism and F’ C ¥* then h(L)NF' =
0iff LOh=1(F')=0. As h"1(F") C £*, (4) implies

lim(B) € £2\ h=L(F)S¥ iff lim(h(B)) C S \ F'S">. (5)

So by (4) and (5) our approach in [Ochsenschlidger and Rieke 2011] is equivalent to
the w-notation of safety properties described by F' C ¥*, and the relation S C Ej,
is compatible with abstractions with respect to such safety properties.

Linear satisfaction (cf. Def. 4) is too strong for systems in our focus with respect
to liveness properties, because S = lim(ﬁ) can contain “unfair” infinite behaviours,
which are not elements of Ej. -

Let for example I D {1,2} and K D {1} then lim(L;x) N Sy # () (infinite
action sequences, where only the partners with index 1 cooperate).

If £, = Z?KZ{Q}U}Z‘;K then lim(LIK) ¢ Ej.

Instead of neglecting such unfair infinite behaviours in [Nitsche and Ochsen-
schldger 1996] we defined a weaker satisfaction relation, called approzimate satis-
faction, which implicitly expresses some kind of fairness.

Definition 5 (approximate satisfaction). A system S C S approximately satisfies
a property B C S iff each finite behaviour (finite prefix of an element of S) can
be continued to an infinite behaviour, which belongs to E. More formally, pre(S) C
pre(SNE).

In [Nitsche and Ochsenschléger 1996] it is shown, that

for safety properties linear satisfaction and

approximate satisfaction are equivalent. (6)

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations . 11

With respect to approximate satisfaction liveness properties stipulate that “some-
thing good” eventually is possible.

Concerning properties E not of the form E = iW\F $¢ with F' C £* approximate
satisfaction is not compatible with abstractions in such sense, that there exist pairs
of concrete and abstract systems related by homomorphisms such that the abstract
system approximately satisfies such a property E but the concrete system does not
approximately satisfy a “corresponding” property. In [Ochsenschlager 1992] and
[Nitsche and Ochsenschlager 1996] such examples are discussed and a property of
abstractions is given that overcomes this problem. This property is called simplicity
of an alphabetic homomorphism h : ¥* — YX'* with respect to a prefix closed
language B C ¥* and it is formalised in terms of continuation possibilities in B
and h(B).

Definition 6. An alphabetic language homomorphism h : ¥* — X™* is sim-
ple on B C ¥* iff for each w € B there exists u € h(w)~*(h(B)) such that
uH(h(w™h)(B))) = u (h(w) " (h(B))).

In [Ochsenschlager 1992] some sufficient conditions for simplicity are given. For
our purpose the following is helpful (for the proof cf. the appendix)

Theorem 1. If for each y € B there exists z € y~Y(B) with h((yz)"1(B)) =
(h(yz))~Y(h(B)) then h is simple on B.

To formulate the implication of simplicity we have to “extend” h to D,
Let h: £* — 3’ be the homomorphisms defined by h(a) := h(a) for a € ¥ and
h(#) := #.

For z € $* either lim(h(pre(z))) = {y} C >

or max(h(pre(r))) = {z} C B™. (7)

Now let h, : 3¢ — 5 be defined for z € 3 by he(x) = y if lim(h(pre(z))) =

{y} C " and o () := 2{#}* if max(h(pre(z))) = {z} C &"*.
h,, is not an homomorphism but it has the following properties:
If w=wv e X* with v € ¥* and v € X* then

he = h(u)he(v). (8)

Ifw' =wav €Y withu € i\’*, ae¥ ve " and w € 2¢ with e, (w) = w’
then

w = uav with u € ¥*,a € B,v € ¥,
h(u) = ', h(a) = a’ and h,(v) = v’ (9)
In [Nitsche and Ochsenschlager 1996] the following has been proven:
Theorem 2. If h is simple on a regular prefic closed language B then
pre(lim(h/(E))) C pre(lim(@) N E') implies
pre(lim(B)) C pre(lim(B) N h;' (E"))

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



12 . P. Ochsenschlager and R. Rieke

for each E' C >

Here h;*(E'), which is approximately satisfied by the concrete system lim(B), is
the corresponding property to E’, which is approximately satisfied by the abstract

system lim(h(B)). It has been proven that simplicity of h on B is necessary for the
set of implications in theorem 2.

In [Ochsenschldager and Rieke 2011] safety properties are formalised by formal
languages F' C ¥* and it is defined that a prefix closed language B C ¥* satisfies
such a safety property F iff LN F = (. By (4) and (6) this is equivalent to the
statement that lim(I:) approximately satisfies the safety property

S\ F8, (10)

In [Ochsenschliager and Rieke 2011] uniformly parameterised safety properties are
generated by safety properties F' C X% . and defined in such a way that a param-
eterised system L;x C X7y satisfies the generated parameterised safety property

iff Lrx satisfies each safety property (IEE )L (K, (F) with I' ¢ I, K' C K
and 5., € I]’K/7 where III/K, is the set of all isomorphisms LI'K’ i 2 Yk

generated by bijections ¢f, : I — I and LK, : K — K’ in such a way that

dE(a) = a (0, () (11)

for a;, € X We now want to generalise this idea to arbitrary system properties
formulated as subsets of $%. First of all we notice that for index sets I I' K
and K’ each bijection Ll, I — I' and K K > K’ generates an 1somorphlsm

LI/K/ E* *}EI/K/ by LI/K/(a) —L{/Ig(/( )fOraGZIK and LI/K/(#) = #

For each w e E‘}if( hm([f,fg(,(pre( N) ={w'} € 5% .

Now the mapping LOJI/K/ : Zif( — ET,K, defined for each w € Z“’ by
f@f,};,(w) = w' with lim(wa,I;,(pre(w))) = {w'},

i Ik
is a bijection. The set of all these bijections ng;, we denote by Zwp .

—IK . . .
W o is “like an isomorphism” because for each w € Zw holds:

w = uv with u € Z rand v € Z Aff pr[%,( ) = Ef,}%,(u)@g%, (v). (12)
For finite index sets Io, 1, K and K let
Als o ~IK
I(LK), (LK) = | Zwyg-
I'CIK'CK
Note that
(1, K), (1, K)) = 0 if |1 > [I| or |K| > | K], (13)

where |I| denotes the cardinality of the set I.
o — W ) o
Now let I/ C Xz , with fixed index sets I and K, be an arbitrary property.

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations . 13

Motivated by theorem 2 and [Ochsenschléger and Rieke 2011] for finite index sets
I and K we define

EIEK = [((Hf’g(’)w)il(mfﬁ(’(é))]/ﬂf( [(I,f(),(l,K)]' (14)

LwI,K,GI

We say that
lim(ﬁ/[;() approzimately satisfies such a family EIEK of properties iff
lim(ﬁ/g() approximately satisfies each of the properties
(TL50)) ™ @ () for @il € T, K), (1K) (15)
On account of (13) it makes sense to consider finite families of S?K.

Definition 7 (uniformly parameterised behaviour property).
o —_—W -
Let T, I and K be finite index sets. For each t € T let E; C Eitf(t and E;EI‘{
be defined as in (14). Then Erk = (Ef;()teT 1s called a uniformly parameterised
behaviour property. -
We say that lzm(EIK) approximately satisfies Erx iff lim(Lrx) approximately

satisfies each EIK fort € T as defined in (15).
o — W o —— W . o %
IfFE= Yig \inf( with F' C Eff( then by (12)
/\if( o w
(E)

—_—Ww I“I”{ o
LWI/K/ E :Z]/K/ \LI/K/(F)EI/K/

and by (8) and (9)

(e )w) ™ W@ (B)) = S\ () "L (K (F) Sk

Now (10) and (11) imply that definition 7 generalises the corresponding defini-
tions of [Ochsenschlager and Rieke 2011].
If TIZK., is simple on a regular L;x for I’ C I and K’ C K and if E c

X; Kw Eﬂl arbitrary property, then by/‘ﬂeorem 2 hm(ﬁ 1K) approximately satis-

fies ((H}@,)w)’l(ﬂﬁgﬁ(,( 2)) if im(TH2E,, (L 1x)) approximately satisfies ngﬁ(, (E).

If Lrx is self-similar, then 15, (Lrx) = Lpg: for each I’ C I and K’ C K.
ik pe .

If Lwl,li(/ € IwI,K/ then by (12) hm(L’pK/) approximately satisfies 1why, (E) iff

hm(,C i) approximately satisfies E. So we get

Theorem 3. Let I, K, I and K be finite index sets with |I| < |I| and |K| < |K]|.
Let L1k be a uniformly parameterised, self-similar reqular system of cooperations
and let TIEK., simple on £1K for each I' C I and K' C K with |I| [I'| and

|K| = |K'|. Then for E C EIK lzm(EIK) approximately satisfies SIK if lzm(ﬁ/f;()
approximately satisfies E.

Remark 2. By the well known closure properties of the family of reqular languages
[Sakarovitch 2009] Lk is reqular if it is defined by regular languages L, SF, SG.

Self-similarity of Lix is given by sufficient conditions in [Ochsenschliger and
Rieke 2010] (see appendiz).
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14 . P. Ochsenschlager and R. Rieke

If Lk is regular and E w-regular [Perrin and Pin 2004] then approzimately
satisfaction of E by lim(Ljp) can be checked by finite state methods [Perrin and
Pin 2004] (intersection of w-regular languages).

Many practical liveness properties are of the form (1). Let us consider a prefix
closed language B C ¥* and a formal language ) # M C XT. By definition 5
lim(B) approximately satisfies (X*M)“ iff each u € B is prefix of v € B with

v H(B)N M # 0. (16)

If B and M are regular sets, then (16) can be checked by usual automata algo-
rithms [Sakarovitch 2009] without referring to lim(B) N (X*M)¥.

If h: ©* — ¥'* is an alphabetic homomorphism and M’ C ¥T, then by (8) and
(9)

RS (S M) = (Eh7H (M) € £, (17)

which is also of the form (1).

Let us now consider the prefix closed language I C ¥* of example 2 and the
“phase” P C X7 given by the automaton P in Fig. 6.

Fig. 6. Automaton P

lim(L) approximately satisfies the liveness property (*P)“ C 3%,
because the automaton L in Fig. 5(a) is strongly connected and P C L.  (18)

(18) states that in the 1-1-cooperation lim(L) always eventually a “complete run
through the phase P” is possible.
Let now

o

1H{1}\—
Po= @ 7P e nf,,y, and
E = (2{1}{1} ﬁ)w C 2{1}{1} . (19)

As Wi{%}{l} : 2?1}{1} — ¥* is an isomorphism then by (18) lim(ﬁm}) approxi-
mately satisfies E.

By remark 2 Lk is regular in example 2, and in the appendix it is shown that
Lk is self-similar. So if we prove simplicity of Hf,f%, on Lg, which will be done
in section 5 then by theorem 3

lim(ﬁ/j}) approximately satisfies E?K (20)

for each finite indes set I and K.

By (17) (20) states that for each pair of clients and servers always eventually a
“complete run through a phase P” is possible w.r.t. the abstraction, where only
the actions of this client and server are considered.
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4. COOPERATIONS BASED ON PHASES

The schedule SG of example 2 shows that a server may cooperate with two clients
partly in an interleaving manner. To formally capture such behaviour, in [Ochsen-
schlager and Rieke 2010] cooperations are structured into phases. This formalism is
based on iterated shuffle-products [Jantzen 1985] and leads in section 5 to sufficient
conditions for simplicity of Hf,}%, on Lrk.

Definition 8.

PY =N (7)) (P U{e})] for P C X",
teN

For the definition of the homomorphisms O and 7N, let ¢t € IN, and for each ¢
let ¥; be a copy of ¥. Let all ¥; be pairwise disjoint. The index t describes the
bijection a < a; for a € ¥ and a; € .

Let ¥ := | X, and for each ¢ € IN let the homomorphisms 7% and OV be

teN
defined by

al as €%y
€|CLS€E]N\Z75

and ON : ¥% — ¥* with ON(a;) := a for a; € ¥, and t € .

~O—=0—w

Fig. 7. Automaton P for P= {ab}

™ NN = 2 with 71 (as) = {

Let for example P = {ab} be given by the Automaton P in Fig. 7. Then aabb €
P because aabb = ON(ajasbybi) and 7 (ajasbeby) = 7 (a1azbeby) = ab € P and
Tt]N(alangbl) =cforteN \ {1, 2}

a1asbaby is a structured representation of aabb (see definition 10).

Definition 8 looks different to the usual one of iterated shuffle products, as for
example in [Jantzen 1985]. But it is easy to see that they are equivalent. We use
our kind of definition, as it is more adequate to the considerations in this paper.

Definition 9.
A prefiz closed language B C ¥* is based on a phase P C ¥*, iff B = pre(P* N B).

If B is based on P, then B C pre(P") = (pre(P))" and
B = pre(P))*' N B.

—-0__~0

b

Fig. 8. Automaton B for B

Let for example P = {ab} and B be given by the automaton B in Fig. 8. Then
PN B = {ab}*. This implies that B is based on P.
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16 . P. Ochsenschlager and R. Rieke

Generally each B is based on infinitely many phases.

— If B is based on P then B is based on P’ for each P’ D P.
— Each B C ¥* is based on ¥ because X% = ¥*.

The appropriate phases for our purposes will be discussed in Sect. 5.
For the subsequent lemmata, which are proven in [Ochsenschliger and Rieke
2010] and will be used in Sect. 5, let S and T be arbitrary index sets and M C X*.
Let 7/ : 3% — ¥* for t € T and ©T : &% — ¥* be defined like 7N and ON.
For each S’ € S and T C T let

/

03T X% — T% with 02,7 (a(s)) := as for each a(s ) € g7 and

O3 T Sk — Y with 05,7 (a(,.1)) == a; for each () € Sgrur.
Lemma 1 (Shuffle-lemma 1).
Let S, T arbitrary index sets and M C X*, then

M EHHOT (O ED M =05 () (i) ()], (21a)

sesS teT (s,t)eSXT

and, since ©5*T =050 @ng;

SO () A =T () ()] (21b)

seS teT (s,t)€ESXT

Definition 10. Let S be an arbitrary index set. For each x € ©5[ () (7)1 (M)

S
ses

there exists u € () (t2)71(M) such that x = ©%(u). We call u a structured rep-
ses

resentation of x w.r.t. S. For x € ¥* let SRS, (x) := (0%)"Yx) N[N ()~ (M)].
ses
It is the set of all structured representations of x w.r.t. S and fited M C X*.

Now z € P" iff there exists a countable index set S with SR‘(SPU{C})(QU) # 0
(see Lemma 2). If x € P“, then generally SR(SPU{E})(JU) contains more than one

element.

Lemma 2 (Shuffle-lemma 2).
If a bijection between S and T exists, then O5[  (r7)~1(M)] = ©T[ N (+)~1(M))

seS teT
for M C ¥*.
For an arbitrary index set S and S’ C S let

as | as € Xg

S Ly * i g =
I : ¥ — X% vvlthHS/(as)—{ el as€eXs\ By

Lemma 3 (Shuffle-lemma 3).

Let M C ¥*, S, T index sets and y € X%, with T(Ssxt)T(y) € M for each (s,t) €
SxT and x = 09T (y) € X%, then IS L (y) € SR%XT(@S/ (ITZ, (z))) for each
S'cS.

Remark 3. The hypotheses of this lemma are given by (21a).
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In [Ochsenschléger and Rieke 2010] an automaton representation A™ for P is
given, which will illustrate “how a language B is based on a phase P”.

Let PC X* and A= (X,Q,A,q0, F) with ACQxXXxQ, g €Qand FCQ
be an (not necessarily finite) automaton that accepts P. To exclude pathological
cases we assume € ¢ P # (). A consequence of this is in particular that go ¢ F.

For the construction of A™ the set ]NOQ (set of all functions from @ in INy) plays
a central role. In ]NOQ we distinguish the following functions:

0e INO("2 with 0(z) = 0 for each z € @, and for ¢ € @ the function

1]l x=gq
0l zeQ\{qg}"

As usual for numerical functions, a partial order as well as addition and partial
subtraction are defined:
For f,g € ]Ng2 let

f=zgiff f(x) = g(x) for each z € Q,
fH+ge ]NS2 with (f + g)(z) := f(x) + g(z) for each z € Q, and
for f>2g,f—g€ ]NOQ with (f — g)(x) := f(x) — g(z) for each z € Q.

1, € N§ with 1,(z) = {

The key idea of A" is, to record in the functions of ]Ng? how many “open phases”
are in each state ¢ € Q) respectively. Its state transition relation A" is composed
of four subsets whose elements describe

— the “entry into a new phase”,

— the “transition within an open phase”,

— the “completion of an open phase”,

— the “entry into a new phase with simultaneous completion of this phase”.
With these definitions we now define the shuffle automaton A" as follows:

Definition 11 (shuffle automaton).
The shuffle automaton AY = (X, NS, A, 0,{0}) w.r.t. A is an automaton with
infinite state set ]NOQ, the initial state 0, which is the only final state and
AY :={(f.a,f+1,) € N} x £ x N§ |
(go,a,p) € A and it exists (p,z,y) € A} U
{((fra, f+1, —1,) € N§ x £ x NJ |
f>14,(q,a,p) € A and it exists (p,x,y) € A} U
{(fra, f—1,) e N x & x N§ |
f>=14,(ga,p) €A andp e F} U
{(f,a, f) € ]NOQ X X X ]NOQ | (qo,a,p) € A andp € F}.

Accepting of a word w € ¥* is defined in the usual manner [Sakarovitch 2009).

Generally A" is a non-deterministic automaton with an infinite state set. In
the literature such automata are called multicounter automata [Bjorklund and Bo-
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18 . P. Ochsenschlager and R. Rieke

janczyk 2007] and it is known that they accept the iterated shuffle products [Je-
drzejowicz 1999]. For our purposes deterministic computations of these automata
are very important. To analyse these aspects more deeply we use our own notation
and proof of the main theorems.

Let for example P = {ab} (cf. Fig. 7). Then the states f : Q@ — INg of the
automaton P are described by the sets {(¢,n) € Q x No|f(¢) =n # 0}.

0% {1, 1)} - {(11,2)} -5 {AL, 1)} 2 0
is the only computation of aabb € P* in P"“; it is an accepting computation.

Example 3. Let P’ = {ab,aab,b}.
- a b
b a
O—
Fig. 9. Automaton P’ for P’

There are three accepting computations of aabb € P in P’
0% {11, 1)} - {(I1,2)} % {(I1,1)} 25 0
0 -5 {(I1,1)} <5 {(V, 1)} = 0 250
0= (LD} 5 (V1)) =5 {(V, 1)} = 0
and four not accepting computations, e.g.

0% {((IL 1)} -5 (V. )} -5 {(V, )} -2 (Vi D)}

In [Ochsenschldger and Rieke 2010] it is shown that A" accepts P".

Let P C X7 be defined by the automaton P in Fig. 6 and let L C X* be defined
by the automaton L in Fig. 5(a). L N PY is accepted by the following product
automaton [Sakarovitch 2009] of L and P™" (see Fig. 10), where the states f : Qp —
N of the automaton P are described by the sets {(¢,n) € QpxNg | f(¢) = n # 0}
and Qp = {I,IL 111, IV, V, VI, VII}.

As this automaton is strongly connected and isomorphic to L (without considering
final states), L is based on phase P.

The states (7,{(VL,1),(I,1)}) and (8,{(VI, 1), (I1I1,1)}) show that L is “in this
states involved in two phases”.

Note that this product automaton is finite and deterministic.

As deterministic computations in A" play an important role (see theorem 4) for
simplicity we assume that A is deterministic. IL.e., the state transition relation A
can be described by a partial function § : Q x ¥ — @Q which is extended to a partial
function ¢ : @ x ¥* — @ as usual [Sakarovitch 2009]. Additionally we assume
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(1, @D)iﬁ(@, {01, D)) —"—((3. {11, )})
g/Y

Z

N

g ((8, {(VL 1), (I1L, 1)})) gy

(AL, (L)) (4,{av, 1)})

£ £,

(6, {(VI, )}) : (5, {(V,1)})

Fig. 10. Product automaton of I. and P%

that A does not contain superfluous states, i.e. §(qo, pre(P)) = Q. So A™ can be
represented by
AY =AUAUAUA with
A ={(f,a,f+1,) € ]NOQ X X X ]N(? | 6(go,a) = p and it exists b € ¥ such that
d(p,b) is defined},

A ={(fia,f+1,—-1y) € ]Ng2 X X X ]NOQ | f>14,6(q,a) = p and it exists b € &

such that 6(p,b) is defined},

A={(f,a,f—1,) e NI x L x N | f > 1, and 6(q,a) € F} and

A ={(f.a.f) NG x £ x N§ | 8(qo,a) € F}.

Let A C (A™)* be the set of all paths in A" starting with the initial state 0 and
including the empty path . For w € A, Z(w) denotes the final state of the path and
Z(e) := 0. Formally the prefix closed language A and the function Z : A — ]Ng2
is defined inductively by ¢ € A, Z(¢) := 0, and if w € A with Z(w) = f and
(f,a,g9) € A* then w(f,a,g9) € A and Z(w(f,a,qg)) := g. Let o : (A¥)* — X*
be the homomorphism with o'((f,a,g)) = a for (f,a,g) € A", and let « := oziA.
Hence w € A is an accepting path of a word v € ¥* iff Z(w) = 0 and a(w) = u.

Definition 12. AY is called deterministic on w € (pre(P))Y, iff #(a"(z)) =1
for each x € pre(w). In that case, we consider o~ 1(x) as an element of A instead
of a subset of A. (#(M) denotes the cardinality of a set M)

In [Ochsenschlager and Rieke 2010] the following theorem is proven, which will
be used in Sect. 5

Theorem 4. Let A" be deterministic on w € (pre(P))", S a countable index set
and w' € SRgTe(P)(w), then

Zla~ (w)](q) = #({s € S | (g0, 75 (w")) = ¢ and 75 (w") ¢ P U {e}})
for each q € Q.

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



20 . P. Ochsenschlager and R. Rieke

Definition 13. A prefiz-closed language L C ¥* is based deterministically on a
phase P C ¥* w.r.t. P, if L is based on P and the deterministic automaton P
accepts P, so that P™ is deterministic on each w € L C (pre(P))".

If L is accepted by a deterministic automaton L, then L is based deterministically
on P w.or.t. P, iff L is based on P and the product automaton of L and P is
deterministic.

So Fig. 10 shows that L is based deterministically on P w.r.t. P.

5. SUFFICIENT CONDITIONS FOR UNIFORMLY PARAMETERISED
BEHAVIOUR PROPERTIES

We now apply theorem 3 to prove approximate satisfaction of uniformly parame-
terised behaviour properties. By remark 2 it remains to show simplicity of 115, on
L. Therefore we use theorem 1, which demands for that purpose the following
assumptions to be fulfilled:

Assumption 1. There exists Prx C X7y such that
3/ (27 (Lrx0) = (e () 7 (e (L1x))
for each © € Pri.
and

Assumption 2.
ﬁ[K’CipﬁiﬁﬁkerﬁjK).

The following definition is the key to assumpion 1.

Definition 14 (set of closed behaviours). Let B,M C ¥*. M is a set of closed
behaviours of B, iff x=Y(B) = B for each x € BN M.

In Fig. 10 the initial state (1, ) is the only final state of that strongly connected
product automaton, so P" is a set of closed behaviours of L.
The following theorem gives a set of closed behaviours of L.

Theorem 5.
Let PY be a set of closed behaviours of L and let we(P™) resp. wr(PY) be a set
of closed behaviours of SF resp. SG, then [\ (wiE)~Y(PY) is a set of closed

(i,k)€Ix K
behaviours of Lk .
To prove theorem 5 the following properties of left quotients are needed:

Lemma 4. Let h: X* - YX* A CX* A; C X* fori el and x € ¥* then

e (hTHA) = k7N ((h(2)) 71 (A)) and (22a)
21 4) = (@ (A)). (22b)
el i€l
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Proof.

(22a)  yex HhHA) e ayech(A)
& h(z)h(y) € A’
& h(y) € (h(x)) ™ (4)
ey eh (M) ~H(4)

(22b)  yea ([ )A) e aye([)A)
iel i€l

Sy € A; foreach i € 1
sycat(A) foreachic T

sye e (A)

iel
O
Proof. Proof for theorem 5:
Letx € Lixn () («FE)~Y(PY). Then by lemma 4
(i,k)eIx K
e L) =27 () @@ V@) THSE) N () () THSE)]
(3,k)ETX K il keK
= () EEOTEE@) @I (@) e (@) (SP)]
(3,k)ETX K il
N ) ) O ()71 (SG))-
keK
So 271 (L1x) = L1k if for each (i,k) € I x K
(mii (2))"1(L) = L, (23)
(‘P{K(I))_l(SF) = SF, and, (24)
(" ()71 (8G) = SG. (25)
By assumption
B (x) e LnPY for (i,k) € I x K (26)

and therefore (w1 (2))~(L) = L (23) because PY is a set of closed behaviours of
L.
Also by assumption

o (@) e SEnX[ () (=P (27)
(i,k)EIX K
for r € I, and
W@ esany [ () TP (28)
(3,k)ETX K

for s € K.
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To derive equations (24) and (25) from (27) and (28) it is sufficient to prove

o5l () @) THPY)] C me(PY) (29)
(i,k)eIXK
for r € I, and
VAL @EOTHP)) Coan(PY) (30)
(i,k)EIXK

for s € K, because mg(P™) resp. mr(P™) is a set of closed behaviours of SF resp.
SG.

The proof of (30) is analogue to (29), so it is sufficient to prove (29).

By definition gpIK = mpoOIrtxK on VK for r € I if ¥, is identified with E(T.,k).
Therefore

e () TP = me[OVPE IR (V)] (31)
(i,k)eIx K
with
Y= () @R () @) P,

(4,k)ETXK keK

By definition er = T({r ,}C)XK o H?{}K for r € I and k € K, if ¥, is identified
with ¥, ). Therefore

N @O PY) = @0 ) UL~ ),

keK keK
. . . r}x K
which implies TI{/3 ;- (Y) C ﬂ (7'({7 ,}f )H(PY).
Now by (31) we have
r r K\ —
oL ) @) Cre @K (I TP (32)
(i,k)EIXK keK
By definition of P*, lemma 1 and lemma 2 we have

OV () (P = 0K () @M ()T (P U R

keK keK teN
r r}x KxINy—
= OUPIONL () (rr b M) = (P U ()]
(k,t) e K xN

= P,

Now (32) implies
el () @) THPY)) C e (PY),
(i,k)€Ix K

which proves (29) and therefore completes the proof of theorem 5. O

To check for example if g (P") is a set of closed behaviours of SF' (see Fig. 11(b))
the following result is helpful:

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations . 23

Theorem 6 (homomorphism theorem for P%).
Let p: 3* — X™* be an alphabetic homomorphism, then holds u(P™) = (u(P))™.

Proof. Let pn : 3 — X the homomorphism with

p(ar) = (u(a)):

for a; € ¥; and t € IN, where (¢); = ¢.
Let 7,V : ¥ — ¥'* and ©'N : £ — ¥'* be defined like 7% and OF.
For these homomorphisms holds j 0 OF = ©'N o yy, and therewith

n(PY) = O () (7)) (P U {e}))]. (33)

telN

From this it follows that p(P") = (u(P))" if the following equation holds:

pn(( (@) NP ULeD) = (@™ (P U {e}) (34)
teN teN
Proof. Proof of equation (34):
For each t € IN holds 7/N o uy = po 7.
Forz € N (Y)Y (PU{e}) and ¢t € IN from this it follows:
teN

N (s (2)) = u(r () € (P U{e}) = u(P) U{e},

and so

pn(() @) TP U{ED) € (EN) 7 P U {e)).

telN telN

For the proof of the other inclusion of equation(34) we now prove the following
proposition:
For each y € %% and (uy)iew with 7/N(y) = u(uy), uy € X for t € T(y) and u;, = €
for t € N\ T(y) exists an x € X5 with y = un(z) and 78 (z) = u, for each t € IN.
Thereby is T(y) := {t € N | 7/N(y) # €}, hence T(y) is a finite set.

Proof by induction.

Induction base.

For y = € holds T'(y) = 0, and = = ¢ satisfies the proposition.

Induction step.

Let y = ¢/al, € 2 with o), € ¥/ and 7/N(y) = p(uy) with u, € ©F for t € T(y) as

well as u; = ¢ for t € N\ T'(y).

Then holds s € T(y), because /N (y) = 7N (y')al, # ¢.

Let now us = ulv), with v/ € BF, a, = 7/N(a)) = pu(v)) # € and u, = € when
/IN(, 1\ —

Ts (y ) =é&.

For t € IN\ {s} let u} := wy.

y' € Ef and (u})ew now satisfy the induction hypothesis. Therefore exists 2’ € X

with ¢ = un(2') and 7N (2') = u} for each t € IN.

Because of the injectivity of 7N on ¥ exists now exactly one 9, € X with

N(Dg) = 0.
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According to the definition of un now for o5 holds:

pw(0s) = ag, hence pn (2'0,) = pn (@) (0s) = y'al, = y.

Because 7 (2'0) = 7N (2") = u}, = uy for t € N\{s} and 7N(2'0,) = 7N(2")7N(v,) =
wivl = u, is then x := 2’0, a proper x € Xj for y = y'al, € Eff for the induction
step. Therewith the proof of the proposition is completed. O

From the above proposition follows the inclusion

@) 7HwP) U{ed) € () (@) THP U {e}),

teN teN
which completes the proof of equation (34). O
This in turn completes the proof of the homomorphism theorem 6 for P*. O

The proofs of (33) and (34) do not depend on the special index set IN. (33) and
(34) hold for arbitrary index sets S (note that we assume index sets beeing not
empty), which imply a corollary for structural representations.

Forz € ¥* and u € SR%U{E}(x) holds # = ©%(u) and u € ﬂ (7)1 (Pu{e}). Now

(33) and (34) imply 0" (us(u)) = p(©% (u)) = p(x )andus( )Eus(trgs( 7)7H(Pu

{e}) = tQS(Tt’S)’l(u(P) U{e}). So we get us(u) € SR} p)uey (u(z)) and

Corollary 1. uS(Swa{E} (x)) C SRi(p)u{s} (u(x)).

The following theorem states that Py := () (7)) ~1(PY) fulfills assump-
(i,k)eIx K
tion 1. This Prx consists of all elements of X7, “in which all phases are completed”.

Theorem 7.
Let L1 be self-similar and let the assumptions of theorem &5 be fulfilled, then

/i (2™ (EIK)) (I ()~ (e (L1xc))

for each x € Lig N P and I' x K' c I x K.
'Lk
(i,k)eIx K

For its proof we need the following

Lemma 5. ForI' C I, K' C K, and L C ¥* with e € L, the following relationships
hold:

K2

A (i)~ H L)) = (7l HL) for (ik) e I’ x K, (35a)
R (b)) = S for (ik) € (I x K)\ (I x K'). (35b)

Proof.

(35a) = € B and 74K (z) € L, for x € (x,K")~'(L). From this it follows
that © € S, 7/ (1’) = 71K (2) € L and = = TIME, (), which implies
@ € Ml [(xff) (L)) Hence (xf,")~'(L) € Iifi [(x}) "M (L)]. For « €
IR (wFE)~H(L)] exists y € X5, such that 7TIK( ) € Land x = HI,K, (y).
Since (i, k) € I' x K’ it follows that ©/X (y) = ol K (1115, (y)) = LK (z) € L
which proves the inclusion T}, [(xZK)~1(L)] C (zZK)~1(L).
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(35b) For z € &%, and (i, k) € (I x K)\ (I’ x K') holds
€ i, i (z) = e € L and x = I35, (z), and so @ € TIK,, [(w}E)~1(L)].
Hence X%, C MK, [(m}E)~1(L)]. The reverse inclusion holds because of
ifer B = Y-

O
Proof. By self-similarity of L;x and theorem 5 holds
Ui (e~ (Lrx)) = Lok (36)
By (35a) and (35b) we have
7/ () € Ml [Lrre 0 ﬂ (i)~ (PY)]

(4,k)ETX K

CHffe (L) () O (@~ PY)
(4,k)E x K’

n N 75 () ~H(PY))

(i,k)e(Ix K)\(I' X K')
=Lrn () @R NS
(i,k) el XK'

=Lk N ﬂ (mh ) (P).
(i,k)El' X K

Now self-similarity of L;x and theorem 5 imply
(75 (@)~ (N7 (L1x)) = e (@)™ (L) = Lok
Together with (36) this proves theorem 7. O
We now formulate conditions to fulfill assumption 2.

Condition I. Following the ideas of [Ochsenschliger and Rieke 2010] we assume
that L C X* is deterministically based on a phase P C X1 w.r.t. a deterministic
automaton P accepting P such that P is a set of closed behaviours of L.

By condition I for w € Lrx and w ¢ () (7})~1(P™) there exists (r,s) €
(i,k)EIX K
I x K with 71X (w) € LN pre(PY) and K (w) ¢ PY.
If Qp is the set of states of P then by definition of P for y € pre(P*) N L, P

is deterministic on y and therefore a;l(y) consists of exactly one element.

Dp(y) := Y [Zp(ap' (¥)(a) € No (37)
qeQp

is the number of “open phases in y” where Zp and ap denote the Z- and a-functions
of P*. Therefore it describes the “defect” of an y € pre(P*)N L relative to PN L.
The index P in (37) denotes that @p and the functions Zp and ap depend on the
automaton P resp. PY.

In particular y € P N L iff y € pre(PY)N L and Dp(y) = 0.

So we have
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Theorem 8.

Let condition I be fulfilled and for each w € Lk \  (  (#lF)"H(PY) ewists
(i,k)EIX K

(r,s) €I x K andv € w™(Lrx) NS, with Dp(rlE (wv)) < Dp(rlE(w)) then for

each w € Ly there exists u € w™(Lix) withwu € Lixg N () (7fE)~1(PY).
(i,k)eIXK

Proof. Tterated application of the hypothesis of theorem 8 eventually leads to
wvy ... v, € L with D((mlE (wvy ...v,)) = 0 for each (i,k) € I x K. There-
with follows the conclusion of the theorem for u = vy ...v,. O

Theorem 8 is the base to construct step by step for each w € Ly av € LixNPri
with w € pre(v).

We now consider example 2. Let P C £t be defined by the automaton P in
Fig. 6. As shown in Sect. 4 (Fig. 10) L is based deterministically on phase P w.r.t.
P and as mentioned after definition 14 P is a set of closed behaviours of L. So
condition I is fulfilled in example 2.

The automaton PF in Fig. 11(a) is the minimal automaton of g (P) C ®7.

By theorem 6 SF Nme(PY) = SF N (we(P))*. So SF N7 (P™) is accepted by
the product automaton of SF and PF" which is depicted in Fig. 11(b).

2, {(IL1)}) 3, {(L,1)})

(a) Automaton PF (b) Product automaton of SF and PF

Fig. 11. Automaton PF and product automaton of SF and PF%

By the same argument as for the product automaton of L and P* SF is based
deterministically on 74 (P) w.r.t. PF, and 7 (P™") is a set of closed behaviours of
SF.

The automaton PG in Fig. 12(a) is the minimal automaton of 7 (P) C T't.

By theorem 6 SG N#p(PY) = SG N (7p(P))*. So SG Nap(P™) is accepted by
the product automaton of SG and PG™ which is depicted in Fig. 12(b).

By the same argument as for the product automaton of L and P* SG is based
deterministically on 7p(P) w.r.t. PG, and np(P") is a set of closed behaviours of
SG.

So especially all assumptions of theorem 5 and 8 are fulfilled for this example,
because in the appendix self-similarity of £;x has been proven.

The automata of Fig. 6, Fig. 11(b) and Fig. 12(b) show that

— each phase is initiated by an F-action,
— each F-partner is “involved” in at most one phase, and

— each G-partner is “involved” in at most two phases.
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—>((1,0)
‘gx/ 2
*@ = @ - @ = @ (2, {(I, )}) & (3, {(111,1)})
((4, (111, 1), (1L, 1)}D
(a) Automaton PG (b) Product automaton of SG and PG

Fig. 12. Automaton PG and product automaton of SG and PG

To construct the completions of phases v of theorem 8 one may imagine that the
following strategy could work.
Completion strategy:

(1) For each G-partner “involved” in two phases “complete” one of this phases.
(2) For each G-partner “involved” in one phases “complete” this phase.
(3) “Complete” the phases, where only an F-partner is “involved” in.

To formalise such a strategy more generally and to make corresponding comple-
tions of phases possible, some preparations and additional conditions are needed.
These conditions, including condition I, we call success conditions for the comple-
tion strategy.

Condition II. To formalise the “number of phases a partner is involved in” we
now assume that

(i) SF C ®* is deterministically based on ne(P) C ®1 w.r.t. the minimal au-
tomaton PF of ne(P) ,
(ii) mo(PY) is a set of closed behaviours of SF

(iii) SG C T* is deterministically based on mr(P) C T'" w.r.t. the minimal au-
tomaton PG of nr(P) and

(i) mp(P™) is a set of closed behaviours of SG.

Fig. 11(b) and Fig. 12(b) show that condition II is fulfilled in example 2.

For each w € Lk, i € I and k € K holds ¢! % (w) € SF and v}X (w) € SG.

By condition II SF = SF Npre((7e(P))") resp. SG = SG Npre((nr(P))™) and
PFY resp. PGY is deterministic on !X (w) resp. v (w).

Now Dpr(¢!E (w)) resp. Dpe(viE (w)) formally defines the “number of phases
partner ¢ resp. k is involved in”. Dpf and Dpg are defined analogously to Dp:

For y € SF Npre((me(P))™)
D (y) = Z [Zpr(app®))()
qeQrprr
and for y € SG N pre((7r(P))™)
Dec(y) = Y [Zrc(apg®)(a),

4€Qra
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where Q) pr resp. @ pg is the state set of PF resp. PG and Zpp resp. Zpg and app
resp. apg denote the Z- and a-function of PF™" resp. PG™.

We now want to derive relations between Dp (7K (w)) and Dpr (!X (w)) resp.
Dpe (15 (w)) for w € Ly, i€ I and k € K.

As in the proof of theorem 5 the following holds:

Lixc () @) c (@D

(i,k)EIX K keK
for each r € 1.
On account of /K = ({ ]};)X o Hg{}K we get
— rFxX Ky —
L < (KON by,
keK
which implies
r}x K
K cw) e () (I 71(w) (38)
keK

for each w € L and r € I.

By oK = 7y 0 O1r}XK o HiK}K (38) implies

P (w) C e[ (7D (L)) (39)
keK

for each w € Ljg.
Condition I implies

L = pre(L N P™) C pre(P™) = (pre(P))™.
Now by lemma 1 and 2

r K\ —
0 e (w) € () L)1)

keK
rIx K _
< NN () (ore(P)))]
keK telN
r}x K xIN rIx K xIN\ —
=00l N ™) ere(P))] (40)
(k,t)e K xIN
which implies
= UL o (w)) € (pre(P))™ (41)
on account of @{"*K o @?{XEXN OI{rxKxN

So by (38)-(41) for each w € L1k and r € I there exists w” € SRgr];;IIf)XN( "

with

ol (w) = ma(w') and T e (w) = O ("), (42)
Now by corollary 1
Ty en (W) € SRET SIS (01 (w)) (43)
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where

TPy K xN - 2>{kr}><K><]N - @?T}XKX]N with Wé{r}xxxm(as) = (1o (a))s

for as € s, s € {r} x K x N and (¢g); :=e.

By condition IT PFY is deterministic on p!%(w) for w € Lx and r € I. There-
fore theorem 4 applies to PF" with the structural representation of (43) and we
get

Zprlapp(er™ (w))(q) =#({(r k1) € {r} x K x N |

épr(gpro, T{i;c}’tX)KXW(Wé{,}Xmm(w”))) =q
r}x K xIN
and (0PI N (g (@) ¢ ma(P) U {e}})
for each ¢ € Qpp. (44)

Here Qpr is the state set, gppo the initial state and dpr the state transition
function of PF. Zpr and apr denote the corresponding Z- and a-functions of PF.
By the proof of theorem 6 and corollary 1 the homomorphisms

T(,irk}tX)KX]N 1 @Yy — @7 are defined by

r KxIN r KxIN
(SN () = SO () (45)

for each z € @7\ r v C Xk
As mentioned in the proof of (34)

Hr}x KxN o {r}xKxIN
(rk,t) OTeyacnn = T2 Ty
which implies
r}x K xIN r}x K xIN
OISO N (T e (@) = (LN (W) (46)

for each kK € K and t € IN.

Now we apply lemma 3 to the structural representation w” of (42). Let k € K,
M :=pre(P), S:={r} x K, T :=N, ¢ :=w" and z := Hg{}K(w) By (42) all
assumptions of lemma 3 are fulfilled and hence

r}x K xIN r k}xIN r r}x K
S N w”) eSRELAP N @UIx i K L (fK L (w))))

r k N
= SRU L N (w)) (47)

by identifying E{T}K with Z{r}xK and E{r}x{k} with 3,.k.
(44) and (46) imply
Zprlapp(pr™ (w))(@) =#({(r,k,t) € {r} x K x N |

6PF(C]PFOa7T<I>(T({T7:1i;)l{xm(w”))) =q

and o (70715 N (") ¢ me(P) U {e}})

for each ¢ € Qpp. (48)
By condition I PY is deterministic on 7!/ (w) for w € Lk and (r,k) € I x K.
Therefore theorem 4 applies to P* with the structural representation of (47) and
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we get

Zplop! (mii (w))(@) =#({(r k. 1) € {r} x {k} x N |

r k}xIN r}x K xIN
Sp(apor, o N I E S T w™)) = ¢

r k N r KxIN
and 7T DA (ON (40n) ¢ P U {e}))

=#({(r, k1) € {r} x {k} x N |
5P(QP0',T£[TTI];;)I(XN(W//)) =q

and 77O N (W) ¢ PU{e}})

for each g € Qp and k € K (49)

because of
{r}x{k}xN H{r}xKx]N _ T{r}xKx]N
(r,k,t) {r}x{k}xN (r,k,t)
for each (r,k,t) € I x K x IN.
In (49) Qp is the state set, gpog the initial state and dp the state transition
function of P.

By (47) T(gTiifXN(w") € pre(P) for each (r,k,t) € I x K x IN.

Now equations (48) and (49) imply relations between Zpp[app (L% (w))] and
Zplap (7! (w))] which can be used to formulate conditions allowing completions
of phases to reduce Dp (K (w)).

For that purpose let the relation R C Qp X @ pp be defined by

Ry == {(dp(qpo,u)),dpr(qpro,ma(u))) € Qp X Qpr| u € pre(P)}.
For ¢ € Qp and qr € @ pr we also use the notation
Ro(q) :=={z € Qpr| (¢, %) € Ro} and Ry (qr) := {y € Qp| (y,qr) € Ra}.

If Zprlapy (et (w))](gr) > 0 for some gr € Qpp then by (48) there ex-
ists k;, € K and t;, € IN such that 5PF(QPF0,W@(T{T}XKX]N(UJN))) = qr and

(T7kq7tQ)
o (r 1SN (W") ¢ wa(P) U {e}. This implies 77} N (w”) ¢ P U {e} and
by (49) there exist ¢ € Rg"'(gr) with
Zplap! (ny5 (w))](q) > 0. (50)

Concerning an implication in the other direction one have to note that u € pre(P)
and u ¢ P U {e} does not imply 7w (u) ¢ me(P) U {e}. For that reason let

Eg = {0p(qro,u) € Qp | u € (pre(P) \ {e}) N 75" ({})} and

Py := {0p(qpo,u) € Qp | u € (pre(P) \ P) N7y (1a(P))}.
If Zplap' (71K (w))](p) > 0 for some p € Qp and k € K then by (49) there exists
t, € IN such that dp(gpo, T({Tfiigxm(w”)) = p and T({Tf,};igxm(w”) ¢ PU{e}.
Now if p € E¢ U Pg by (48) there exists pr € Re(p) with
Zprlapp(er" (w))(pr) > 0. (51)
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By the same argumentation and corresponding definitions of Rr, Fr and Pr one
gets corresponding propositions for v/% (w) with s € K and w € L1k
If Zpglapg(vI% (w))](ge) > 0 for some gg € Qpc then there exists i, € I and
p € Rr'(qg) with

Zp[ap (mi)s (w))](q) > 0. (52)

If Zplap! (71K (w))](p) > 0 for some p € Qp \ (Fr U Pr) and i € I then there
exists pg € Rr(p) with

Zpclaps (75 (w))](pe) > 0. (53)

For the following definition let Fp resp. Fpr resp. Fpg be the set of final states
of the automaton P resp. PF resp. PC.

Definition 15. A state of qp € QpFr has the completion property iff
for each x € pre(te(PW)) N SF with Zpr[aph(2)](qr) > 0 and

each (y,q) € (pre(P*) N L) x Ry*(qr) with Zplap'(y)](g) > 0

it holds q ¢ Er and

if ¢ € Pr then there exists y' € y~ (L) Nz~ 1(SF) N ®T with
op(q,y') € Fp and dpr(qr,y') € Fpr and

if ¢ ¢ Pr, then for each (z,qc) € (pre(nr(P™)) N SG) x Rr(q)

with Zpclapy(2)](ga) > 0 there exists

y' €y~ Y L) Ny (= Y(SF)) Nrpt(271(SG)) with

op(q,y") € Fp, d0pr(qr,ma(y")) € Fprr, dpc(qc,mr(y")) € Fpa and
To(y") # e # mr(y”).

In a corresponding manner it is defined how a state g € @ p¢ has the completion

property.
Now we are able to formulate condition III:

Condition III. For each u € pre(me(P™)) N SF with Z Zprlaph(w)](p) > 1
PEQPF
there exits qp € Qpr with Zpp [a;},(u)](qF) > 0, which has the completion property
and for each v € pre(mp(P™)) N SG with Z Zpclaps(v)](p) > 1 there exits
PEQ P
qc € Qpc with Zpglaps(v)](ge) > 0, which has the completion property.

To check the completion property for a state qr € @ pp first of all the sets Rg,
Er and Pr have to be determined. This can be done by constructing the product
automaton of P and PF resp, P and PG whose state set is Rg resp. Rp.

In the definition of the completion property there are quantifications over = €
pre(me(PY)) N SE, y € pre(PY)N L and 2z € pre(ap(P*)) N SG.

As z, y and z only appear in the terms Zpp[app(x)], 27 (SF), Zp[ap'(y)],
y~ (L), Zpclapy(2)] and 271 (SG), which are the state components of the product
automaton of SF and PF™, resp. L and P", resp. SG and PG" these quantification
can be checked by inspecting these product automata.

(Note that the left quotients of a formal language can be identified with the states
of its minimal automaton [Sakarovitch 2009])

By the same argument condition III can be checked by inspecting the product
automaton of SF and PF" as well as the product automaton of SG and PG™.
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We demonstrate this in our example 2 and prove condition III:
The second components of the states in Fig. 11(b) show that
Z Zprlapr(w)](p) < 1 for each u € pre(rq(PY)) N SF.

PEQPF
So no qr € @ pp with the completion property has to be found.

The second components of the states in Fig. 12(b) show that
Z Zpclaps(0)](p) > 1 holds only for those v € pre(rr(PY)) N SG with

PEQPc
Zralaph(©)] = {1 1), (1L, 1)}.

So for these v g¢ € Qpg with Zpg[apg(v)](ge) > 0, which has the completion
property, has to be found.

So qgg € {HLH} - ng.

Now we show that IIT € @ pg has the completion property. For that purpose the
sets Rr, Fs and Pg are needed.

The product automaton of P and PG accepting pre(P) N 7' (7r(pre(P))) =
pre(P) is given in Fig. 13.

(D)2 (@I I)) & /f ((u II)>—>(OV 111))

((viv) IV)g( (VI 111)}-( v, III))

Fig. 13. Product automaton of P and PG

So
Rr = {(L I), (IL I), (111, H), (IV, HI)7 (V, III), (VI, IH), (VII, IV)}
CQp X Qpg- (54)

To determine F¢ and Pg we first compute the product automaton of P and PF
accepting pre(P) Ny ' (e (pre(P))) = pre(P). Fig. 14 shows this automaton.

.—>((11 I >i>((m H))—»( (v H))
((VH IV)g(VI Iv)><—((v HI)

Fig. 14. Product automaton of P and PF

Fig. 14 shows
Eg =0 and Py = {VI}. (55)

By definition 15 the state g = III € @ pg has the completion property iff
for each z € pre(rr(PY)) N SG with Zpglaps(2)](I11) > 0 and
each (y,q) € (pre(P¥) N L) x Ry (I) with Zp[ap' (y)](g) >0
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it holds g ¢ Es and
if ¢ € Py then there exists y' € y=1(L) N 2~1(SG) N T with
op(q,y’) € Fp and dpe(111,y') € Fpg, and
if ¢ ¢ Py, then for each (x,qr) € (pre(me(P*)) N SF) X Re(q)
with Zpplapp(2)](gr) > 0 there exists
y' e yil(L)ﬂﬁgl(Zﬁl(SF))m’/Tl:l(Zfl(SG)) with 5p(q,y”) € Fp, 5pp(qp,7rq>(y”)) S
FPF;
dpa (I, - (y")) € Fpe and
To(y") # e # mr(y”).
For IIT € Qp¢ (54) implies

Ri' ={IV,V,VI} C Qp. (56)
Now z € pre(nr(PY))NSG and Zpglapg(2)](II1) > 0 implies by the automaton
in Fig. 12(b)
5sa(1,2) € 3,4}, (57)
where dg¢ is the state transition function of the automaton SG in Fig. 5(c).

(y,q) € (pre(PY)N L) x Ry (I1T) and Zp[ap'(y)](g) > 0 implies by (56) and by
the automaton in Fig. 10

g=IVeQpand i (l,y) =4 or (58a)
qg=VeQpand i, (l,y) =5 or (58b)
¢=VIeQp and 6.(1,y) € {6,7,8}, (58¢)

where 07, is the state transition function of the automaton L in Fig. 5(a). In each
of these cases holds ¢ € Eg on account of (55).

Also by (55) g € Pg for case (58¢). In that case dp(q,g,) = 0p(V1, g,) € Fp and
5pg(HI,gZ) € Fpa.

By (57) the automaton SG implies g, € z~!(SG), and by (58c) the automaton
L implies g, € y~'(L). So v =g, € y~*(L) N 2~1(SG) N T+, which implies the
completion property of III € Qpg in case (58c¢).

If g € {IV,V} then by (55) ¢ ¢ Pg. So we need the relation Re C Qp X QpF.

By the product automaton of Fig. 14

Rg = {(L,1), (IL, II), (111, II), (IV, II), (V, III), (VI,IV), (VIL, IV)}. (59)

Now in case (58a) (z,qr) € (pre(rs(PY))NSF) x Ry(q) and Zpp[apy(x)](gr) > 0
implies by (59) and by the automaton in Fig. 11(b)

qr = Il € Qpr and 65}7‘(1737) =2, (60)

where dgr is the state transition function of the automaton SF in Fig.5(b).

By (58a) the automaton P implies dp(q, fyf,g,) = dp(IV,f,f,g,) € Fp, and the
automaton L implies f,f,g, € y~1(L).

By (60) the automaton PF implies dpr(qr, fyf,) = dpr(I1,{,f,) € Fpr, and the
automaton SF implies f,f, € z71(SF).

The automaton PG implies épg (111, g,) € Fpg, and by (57) the automaton SG
implies g, € 271(SQ).

So y" = f,f,g, fulfills the conditions of the completion property of III € Q p¢ in
case (58a), because of me(y") # € # mr(y”).
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By a corresponding argument in case (58b)
qr =111 € QPF and 6SF(17-75) = 3. (61)

This implies that ¢ := f,g, fulfills the necessary conditions to complete the proof
of the completion property of III € Qp¢.

So our example 2 fulfills condition III.

Using (50) - (53) we are able to prove

Theorem 9. Let condition I - condition III be fulfilled and w € L.

(9a) If Der(plE(w)) > 1 forr el
then there exists s € K and w' € w™(Lrx) NS, with
De (" (ww')) < Dp(mpff (w)),
Der (¢, (ww')) < Dep(op (w)) and
Dre (715 (ww')) < Dpg (25 (w)).

(9b) If Dpo (v K (w)) > 1 fors € K
then there exists v € I and w' € w=(L1x) N T, with

Dp ()5 (ww')) < Dp () F (w)),
Dpe (71X (ww')) < Dpg (L5 (w)) and
D (pr " (wuw')) < Dpr (@ (w)).

Proof. The proof of (9b) is analogue to (9a), so it is sufficient to prove (9a).
w € Lk implies ¢! (w) € SF and hence by condition IT
oIE (w) € SF Npre((me(P))") and PF is deterministic on ¢ (w).

So by definition Der (0" (w)) = 3 [Zpr(app (o (w))](@)-
4€EQPF
Now on account of condition III and Dpy (L% (w)) > 1 there exists qr € Qpr

with
Zpr[app(pr™ (w))l(gr) > 0, (62)

which has the completion property.
By (50) there exist k, € K and ¢ € Ry'(qr) with

Zplop' (m1i5, (w)))(g) > 0. (63)

Now condition I, condition II and the completion property of gp imply (with

y = 71'7{;2 (w) and = = @ (w)) ¢ ¢ Er and for each of the two cases ¢ € Pr or

q ¢ Pr the existence of certain continuations of ﬂfﬁ (w) in L.
Case 1: g € Pr
By the completion property of g there exits

y' € (mi (w)"HL) N (@r (w)TH(SF) N @* (64)
with 0p(q,y’) € Fp and dpr(qr,y’) € Fpr. We now show that s := k, € K and
w = (wi,:(];{kq})*l(y’) € <I>;rkq fulfill (9a). (Note that wiZj{kq} D X0, — X7 is an
isomorphism.)
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For this w’ it holds wf,ﬁi(w') =y, pIEW') =y, nll(w') = ¢ for (i,k) €
(I x K)\{(r,ky)}, pIE(w') = for i € I\ {r} and v}X(w') = ¢ for k € K.

Together with (64) this implies

w' € w_l(EIK) n Z;; (65)

Let ' = ay...a, withn > 1 and a; € ® for i € {1,...,n}. On account of
dp(q,y') € Fp fori e {1,...,n+ 1} there exists ¢; € Qp with ¢ = q1, dp(qi,a;) =
giv1 for i € {1,...,n} and ¢,+1 € Fp.

According to the definition of P let

A%ZAPUAPUAPUEPC]N(?PXEX]N(?P

be the state transition relation of P* and Ap C (AB)* the set of all possible paths
in P starting with the initial state 0 and including the empty path e.

Let fi = Zplap! (w]f (w))] € NG”.

By (63) f1 > 1, =1g,.

Forie {1,...,n—1} let fix1 := fi — 14 + 14,41 and let fry1 := fi, — 1,,.

This implies f; > 1,4, and

Z filp) = Z filp) fori € {1,...,n} and

PEQP PEQP
Y fane)= D> filp)—1. (66)
PEQP PEQP

By definition of A'Y
(fiuai>fi+1) € AP and (fnaanafn+1) € AP'

Hence
-1

Qp (Wflg(w))(flaahfz) oo (fnsan, fat1) € Ap.
This implies

ap! (mif (ww') = ap (7] (w))(f1, a1, f2) - (frs @y fasr)

because by (65) and condition I P* is deterministic on W?{g (ww’).
So by (66) we get
De (my{ (ww')) = De(rfif (ww')) = 32 Zplap! (7] (wuDIp) = 3 fasr(p) =

PEQP PEQP

> filp)=1= X Zplap' (r/f (w))](p) — 1 = Dp(n}f (w)) - 1.
PEQP peEQP
The same argumentation concerning PF" shows

Der (¢, (ww')) = Der (o)~ (w)) — 1.
it holds v/ (w') = ¢ and therefore
Drg (7, " (ww')) = Dee (7~ (w)),

which completes the proof of (9a) for case (1).

Because of w' € &F.

T8

Case 2: ¢ ¢ Pr
Now by (63) and (53) there exists gg € Rr(p) with Zpg[aglc(v,gf(w))](qg) > 0.
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So condition II and the completion property of ¢r imply (with z = 'y,qu(w)) the
existence of

y" € (m (W) TN (L) N (0 (w)) 7 (SF))
N ((E (w)7H(8@)) (67)
with 0p(q,y") € Fp and dpr(qr,7a(y")) € Frr, dpc(qa,mr(y"”)) € Fpc and

To(y") # € # mr(y”).
We now show that s := k, € K and w’ := (Wizq}{k"})_l(y”) € ijq fulfill (9a). For

this w’ it holds 7% (w') = y", /X (w') = ma(y"), X (') = 7r(y"), 7 (W) =
for (i,k) € (I x K)\ {(r,ky)}, oI (w') = ¢ for i € I\ {r} and 7i¥(w') = ¢ for
ke K\{kq}
Together with (67) this implies
w ew N (Lix) NI, (68)
Now the same argumentation as in case 1 shows
Dp (" (ww')) = Dp (73 (w)) — 1,
D (H (ww')) = Dpr (pL* (w)) — 1 and
Deg (7, (ww')) = Dpe (7, (w)) — 1,
which completes the proof of theorem 9. O

Iteration of theorem 9 proves

Corollary 2. Let condition I - condition III be fulfilled, then for each w € Lyk
there exists v € w™(L1x) such that
Der (/" (wi)) < 1, Deg(y" (wib)) < 1 and D (miy" (wib)) < D (i (w))

foreachi eI and k € K.

By (49) Z Zplap! (mH (w))](g) > 1 implies the existence of ¢,# € IN

9€QpP\(EeUPs)

with ¢ # ¢/, 3p(qpo, 7o N (W) € Qp \ (Ba U Ps), 10N (w”) ¢ PU{e},
dp(apo, 7ok i N (W) € Qp \ (B U Pa) and 771" N(w”) ¢ P U {e}.

By the definition of F¢ and Pg this implies
Spr(gpro, ma(rl N (W) € Qpp, ma(rl N (w")) ¢ me(P) U {e},
Spr(gpro, ma(rl M ")) € Qpr and ma(rl N (w")) ¢ ma(P) U {e}.
Hence by (48)

Dee(pr(w) = Y Zerlaprp(er™ (w)ar) > 1.
qrEQpr
By analogous argumentation
Yo Zelap' (@ (w)](e) > 1
q€Qp\(ErUPr)

implies Dpg (725 (w)) > 1 for (r,k) € I x K.

So corollary 2 implies
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Corollary 3.

S Zelap (K (w))(@) < 1 and
q€Qpr\(FasUPs)

> Zplap! (7 (wd))](g) <1
qeQp\(ErUPT)

for (i,k)e I x K.

Condition IV. For each z € pre(np(P*)) N SG and qg € Qpg with
Zralapb(2)] = 1yq and cach (y,q) € (pre(P*) 0 L) x Ry (ag) with
Zplap' (1)](g) > 0, > Zplap'W)(¢) <1 and
¢ €Qp\(EsUPs)
Z Zplap' (y)](d') < 1 it holds

q'€Qp\(ErUPr)
q¢ Es and
if ¢ € Py then there exists y' € y~1(L) N2~ 1(SG) NT'T with

dp(q.y') € Fp and 0pc(ga.y') € Fpa, and
if ¢ ¢ Py then for each (z,qr) € (pre(me(PY)) N SF) X Re(q)

with Zpp[app(x)] = 14, there exists

y' €y Y L) Nag (a7 Y(SF)) Napt (271 (SG)) with

6p(q,y") € Fp, dpr(ar,ma(y")) € Fpr, 6pc(qc,mr(y")) € Fpc and

Ta(y") # & # mr(y”).

We now show that example 2 fulfills condition IV.
The states of the automaton in Fig. 12(b) show that Zpg[apg(2)] = 14, holds
only for those z € pre(np(P")) N SG and q¢ € Qpe with

gc =1I and dsg(1,2) =2 or (69a)
qGc = IIT and 55‘@(1, Z) = 3. (69b)
Now (54) implies
Ry H(IT) = {IIT} € Qp and (70a)
RMIID) = {1V, V, VI} C Qp. (70b)
Fig. 13 shows
Er ={IT} and Pr =0 (71)

By (70a), Fig. 10, (55) and (71)
(y,q) € (pre(PY) N L) x Ry (I1) with Zp[ap' (y)](q) > 0,

Y. Zelep'wld)<tand Y7 Zplap'(y)l(¢') < 1implies
q'€QpP\(EeUPs) ¢’ €Qp\(ErUPT)
q=T1€ Q,and d.(1,y) = 3. (72)
By (70b), Fig. 10, (55) and (71)
(y,4) € (pre(P*) N L) x Ry (1) with Zp[ap'(y)](g) > 0,
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S Zelap'W@) <land Y Zplap'(y)l(¢) < 1 implies

7' €QP\(EsUPs) ¢’ €QpP\(ErUPr)
g=IVeQ,anddor(l,y) =4 or (73a)
g=VeQ,and ér(1l,y) =5 or (73b)
g=VIe@Q,and 6.(1,y) € {6,7}. (73c)

On account of (55) in each of these 4 cases holds ¢ ¢ Fs.

Also by (55) g € Py iff ¢ = VI € Qp, which is case (73c). Hence g5 =111 € Q pg,
dsa(l,z) = 3 and d1(1,y) € {6,7}. In that case the automata P (Fig. 6), PG
(Fig. 12(a)), SG (Fig. 5(c)) and L (Fig. 5(a)) show dp(q,8,) = dp(VL,g,) € Fp,
dpclqe,e.) = 0pc(ll,g,) € Fpg, & € Zﬁl(SG) and g, € yil(L).

Soy =g, €y Y(L)NTH N2z"(SG) fulfills condition IV in case (73c).

In each of the other 3 cases (72), (73a) and (73b) holds ¢ ¢ Ps.

In case (72) holds g¢ =11 € Qpg, dsc(l,2) =2, g =11 € Qp, d(1,y) = 3 and
by (59) Ro(II1) = {II} € Qpr.

Hence by the automaton in Fig.11(b)

(z,qr) € (pre(me(P™)) N SF) x Re(III)

with Zpplapy ()] = 1,, implies ¢r =11 € Qpr and dgp(1,z) = 2.

In that case the automata P (Fig. 6), PF (Fig. 11(a)), PG (Fig. 12(a)), SF
(Fig. 5(b)), SG (Fig. 5(c)) and L (Fig. 5(a)) show

5P(q7gyfyfzgz) = 5P(IIIagyfyfzgz) S fp,
6PF (qFa T (gyfyfzgz)) = 5PF (IL fyfz) S -FPF;
5PG(QG3 7Tl—‘(gyfyfzgz)) = 5PG(ILgng) S -FPG7

gylytg, € y~1 (L), mo(gylyf,g,) € 271 (SF) and 7r(gytyf,g, € 271 (SG).
So y" := gyt,f,g, fulfills condition IV in case (72).

In case (73a) holds g¢ = Il € Qpq, dsc(l,2) =3, ¢ =1V € Qp, 0r(1,y) =4
and by (59) Re(IV) = {II} C Qpp.

In case (73b) holds g =11l € Qpq, dsc(l,2) =3, =V € Qp, 01(1,y) =5 and
by (59) Ra(V) = {ITT} C Qpp.

Now by the same argumentation as in case (72) y” := f,f,g, fulfills condition IV
in case (73a) and y" := f,g, fulfills condition IV in case (73b). So example 2 fulfills
condition IV.

Theorem 10. Let condition I - IV be fulfilled and w € L1 with Dpg (ol (w)) < 1
and Dpe (15 (w)) <1 for (i,k) € I x K.

If Dpg(vIE (w)) = 1 for s € K then there exists v € I and w' € w1 (L1x) NS,
with

Dp () £ (ww')) < Dp ()5 (w)),
Deg (73" (ww')) = 0 and
Dpr (o1 (wuw')) < Dpg (r (w)).
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Proof. By corollary 3

S Zplap (K (w)](¢) < 1 and
q,EQP\(Eq>UP<[))

> zelap' = Ew)e) <1 (74)
q'€Qp\(ErUPr)

for each (i,k) € I x K.
Dpg (71K (w)) = 1 for s € K imply the existence of qg € Qpg with

Zpglape (™ (w)(d) = (75)

Now by (52) there exists i, € I and ¢ € Ry (g¢) with

!
Zplap! (w5 (w)](q) > (76)

(74), (75), (76) and condition IV imply (with z = K (w) and y = 7TIK(’LU))
q ¢ FEg and for each of the two cases ¢ € Py or ¢ ¢ Py the existence of certain
continuations of W{qf (w) in L.
Case(1): ¢ € Py
By condition IV there exists

y € (w5 (w) 7N L) N (3 (w))TH(SG)NTF (77)

with dp(q,y’) € Fp and dpa(ga,y’) € Fra-

We now show that r := i, € I and v’ := (ﬂ,{g}{s})’l(y') e I'f, ¢ Xf, fulfill the
statement of theorem 10.

For this w’ it holds 7/X(w') = ¢/, vIE(v') = y WIIICK(U)) = ¢ for (i,k) €
(Ix K)\{(r,s)}, il (w') = for k € K\ {s} and p!5(w') =cforieI.

Together with (77) this implies

w' € ’wil(ﬁ[}() N E;rs (78)

Let ¢ = ay...a, withn > 1 and a; € T for ¢ € {1,...,n}. On account of
5(q,y") € Fpfori e {1,...,n+1} there exists ¢; € Qp with ¢ = ¢1, dp(¢;, a;) = ¢it1
forie{1,...,n} and ¢,+1 € Fp.

By the same argumentation as in case (1) of the proof of theorem 9 we get

De (5" (ww')) = D (5" (w)) - 1.

The same argumentatlon concernmg PG shows Dpe(71* (ww')) = 0.
Because of w’ € T/, it holds ¢! (w') = ¢ and therefore

Dpr (X (ww')) = Dpg (plX (w)),

which completes the proof of theorem 10 for case (1).

Case(2): ¢ ¢ Py and therefore ¢ ¢ Eg U Pg.

Now on account of (76) and (51) there exists gr € R (q) with
ZpF[a;};(goqu(w))](qp) > 0, which implies pr[a;};(gaqu(w))] = 14, by the as-
sumptions of theorem 10.
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So (with x = cp{qK (w)) condition IV implies the existence of

y" € (mls(w) "N L) Ny ((9f)f ()" (SF))
Nap (75 (w) 7H(5G)) (79)
with 6p(q,y") € Fp, épr(qr,ma(y")) € Fpr, 0pc(qe,mr(y")) € Fpc and
ma(y") # € # mr(y").

We now show that r := i, € I and w' := (wi;"}{‘@})*l(y“) € X, fulfill the
statement of theorem 10.

For this w’ it holds 7K (w') = y", plE(Ww') = ma(y"), vIE(w') = 7r(y"),
rlE(w') = ¢ for (i,k) € (I x K)\ {(r,s)}, /& (w') = ¢ for i € I\ {r} and
YiE(w') = ¢ for k € K \ {s}.

Together with (79) this implies

w ew N Lix)NY,. (80)

Now the same argumentation as in case (1) shows

Dp (4 (ww')) = Dp (75 (w)) — 1,
De (0, (ww')) = Dpr (¢ (w)) — 1 and
Deg (7" (wu')) = 0,
which completes the proof of theorem 10. O

Iteration of theorem 10 and corollary 2 proves

Corollary 4. Let condition I - condition IV be fulfilled, then for each w € Ly
there exists w € w™ (L) such that

De ()i (wi)) < Dp(mjg (w)),

Der (¢} (wid)) < 1 and Deo (v (wid)) = 0
foreachi el and k € K.
Now corollary 3 and (53) shows
Corollary 5.

Y. Zelap!(nlf (ww))l(q) <1 and
q€Qp\(EsUPs)
Yo Zplap' (@ (wi)))(q) = 0
q€Qp\(EruPr)
for (i,k) eI x K.
Now we reduce Dpf (!X (wi)) in the situation of corollary 4 and 5 by the fol-
lowing

Condition V. For each x € pre(me(P™)) N SF and qr € Qpr with
Zprlapp(2)] = 14, and Ry (qr) N (Er U Pr) # 0 and
each (y,q) € (pre(PY) N L) x (Rg'(gr) N (Br U Pr)) with
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Zplap' (y))(g) > 0, ST Zplop'w)(¢) <1 and
q'€Qp\(EsUPs)

Z Zplap' (9)](d') = 0 the following holds:
q/EQp\(EFUPF)
If g € Pr then there exists y' € y= (L) Nz~ Y(SF) N ®T with
6p(q,y') € Fp and 6pr(qr,y’) € Fpr, and
if ¢ € Er \ Pr, then for each z € pre(np(PY)) N SG
with Zpgapg(2)] = 0 there exists
y' €y Y L) Ny (a7 Y(SF)) Nap (271 (SG)) with
op(q,y") € Fp, dpr(qr,mo(y")) € Fpr, dpc(qco, r(y")) € Fpc and
To(y") # e # mr(y").
We now show that example 2 fulfills condition V.
By (71) ErUPr = {H} C Qp.
By definition 1T € Ry'(gr) iff (I, qr) € Rs.
So by (59)
Ry'(qr) N (Er U Pp) # 0 iff gp =11 € Qpr. (81)
Now the automaton in Fig. 11(b) shows that
Zpp [a;}?(a:)] = 1yj for = € pre(me(P™)) N SF
iff 5gp(1,2) = 2. (82)
By (55) Eg U Ps = {VI} C Qp. So by the automaton in Fig. 10
(y,q) € (pre(PY)N L) x (Ry"(II) N (Er U Pr)) with
Zplap'W)(@) >0, D Zplap'()(¢) <1 and
q'eQp\{VI}
> Zplap'())(¢) = 0 implies
a’€Qp\{I1}
gq=II€@Qp and i1 (1,y) =2. (83)
By (71) Er \ Pr = {II} and therefore ¢ =11 € Er \ Pr.
The automaton in Fig. 12(b) shows, that
Zpclaps(2)] =0 for z € pre(rr(PY)) N SG
iff (55@(1, Z) =1. (84)
Now (81) - (84) and the automata P (Fig. 6), PF (Fig. 11(a)), PG (Fig. 12(a)), SF
(Fig. 5(b)), SG (Fig. 5(c)) and L (Fig. 5(a)) show
5P(Q7 gxgyfyfzgz) = 6P(Ha gxgyfyfzgz) S ]:Pa
opr(qr, o (gxgylylsg,)) = dpr (1L, ff,) € Fpr,
5PG(QG03 7Tl"(gxgyfyfzgz)) = §PG(I7gxgygz) S FPGa
gxgylyf,g, € yH(L), To(gxeyfyf,g,) € 271 (SF) and 7r(gxgyfyfg, € 271 (SG).
So y" = gygyf,f,g, fulfills condition V, which shows that example 2 fulfills condi-
tion V.

Theorem 11. Let conditions I - V be fulfilled and w € L1 with
Dpr (0! (w)) < 1 and Dpe (7} % (w)) = 0 for each (i,k) € I x K.
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If Dpr (9K (w)) = 1 for r € I, then there exists s € K and w' € w1 (L1x) NS,
with

D (75 (ww')) < Dp(my L (w)) and Der(p" (ww')) = 0 = Dpe (7" (wuw')).
Proof. By corollary 5

> Zplap! (i (w))](¢') <1 and
7'€Qp\(EaUPs)

> Zelap @ E@))(@) =0 (85)
q'€Qp\(ErUPr)

for each (i,k) € I x K.
Dpr (pl X (w)) =1 for r € I imply the existence of qr € Q pr with

Zpp[app (o (w)] = 1q,- (86)
Now by (50) there exists k, € K and ¢ € Ry'(gr) with

Zplap (i, (w)(g) > 0. (87)
On account of (85) this imply

q € Ry'(qr) N (Er U Pr). (88)
Now (85) - (88) and condition V imply (with z = !X (w) and y = er,g (w)) for

each of the two cases ¢ € Pr or ¢ € Er \ Pr the existence of certain continuations
of Wf,g (w) in L.

Case (1): ¢ € Pr

By condition V there exists y' € (7] (w)) ™" (L) N (p7% (w)) "1 (SF) N @* with

§p(q,y/) € Fp and 5pp(qp,y’) € Fpr. (89)

We now show that s := k, € K and v’ := (ﬂig}{s})_l(y’) € ®f C X, fulfill the
statement of theorem 11.

For this w’ it holds 7/X(w') = v/, ¢I&(w') = v/, 7K (w') = € for (i,k) €
(Ix K)\{(r,s)}, oK (w') = for i € I\ {r} and v} 5 (w’) = ¢ for k € K. Together
with (89) this implies

w € w_l(,CIK) n Zj_s. (90)

Let ¥ = ay...a, withn > 1 and a; € ® for i € {1,...,n}. On account of
op(q,y’) € Fp forie {1,...,n+ 1} there exists ¢; € Qp with ¢ = ¢1, dp(gi,a;) =
a;+1 fori e {1,...,n} and ¢,11 € Fp.

By the same argumentation as in case (1) of the proof of theorem 9 we get

De (" (ww')) = D (" (w)) = 1.

The same argumentation concerning PFY shows Dpg (!X (ww')) = 0.

I
Because of w’ € @, it holds v/ (w') = ¢ and therefore

Dpg (71X (ww')) = Dpe (415 (w)),

which completes the proof of theorem 11 for case (1).
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Case (2): ¢ € Er \ Pr.

By assumption of theorem 11 Zpg[a;é('y,gf(w))} =0.

So (with z = ’y,ﬁf(w)) condition V implies the existence of y’ € (w{,ﬁz (w))~H(L) N
g (oK (W) T (SF) N (3 (w)) 1 (SG)) with

op(q,y") € Fp,opr(ar,ma(y")) € Fpr,
dprc(gao, mr(y")) € Fpg and
T (y") # e # mr(y"). (91)

We now show that s := k; € K and w’ := (ﬂ'g}{s})_l(y”) € X, fulfill the statement
of theorem 11.
For this w’ it holds 7/ (w') = y", ¢ (w') = mae(y”), v{¥(w') = mr(y"),
ka(w) = ¢ for (i,k) € (I x K)\ {(r,5)}, o!E(w') = ¢ for i € I\ {r} and
YiE(w') = ¢ for k € K \ {s}. Together with (91) this implies
w' € w_l(EIK) n Z;; (92)
Now the same argumentation as in case (1) shows,
D (7 (ww')) = Do (st (w)) — 1,
Deg (¢, (ww')) = Dpr (" (w)) — 1 and
Dro (7" (ww')) = Dre(v:" (w))
)

on account of 6pg(qgo, VX (w')) = dpa(qco, mr(y")) € Fra.
This completes the proof of theorem 11. O

Iteration of theorem 11 and corollary 4 proves

Corollary 6. Let condition I - V be fulfilled, then for each w € Lri there exists
W€ w H(Lrk) such that

Dy (w1 (wib)) < Dy (< (w)) and Deg (! (wi)) = 0 = Dpo({X (wib)) for each
(i,k) e I x K.

Now (51) and (53) proves
Corollary 7. For (i,k) € I x K holds

> Zplap! (i (wib))](g) = 0 and
q€Qp\(EsUPs)

> Zplop! (miE (wi)))(g) = 0.
9€Qp\(EruPr)
Now Dp (7K (wid)) = 0 can be deduced from corollary 7 by following
Condition VI.
(Ee UPs)N(ErUPr)=1
So we get

Corollary 8. Let condition I - VI be fulfilled, then for each w € L1k there exists
W€ w Y (Lrxk) such that

Dp(mji (wib)) = 0 = Dpr (] " (wid)) = Do (" (wib))
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for each (i, k) € I x K, and therefore by theorem 8

wib € LN () (mEO7HPY).
(i,k)EIX K

For our example we have shown Eg = () and Py = {VI} (55) as well as Fr =
{IT} and Pr =0 (71). So condition VI is fulfilled.

Now by theorem 1, theorem 7 and corollary 8 conditions I - VI and self-similarity
of Ly imply simplicity of H%fﬁ(, on L. Therefore by conditions I - VI, together
with self-similarity and regularity of Ly, theorem 3 can be used to prove approx-
imate satisfaction of uniformly parameterised behaviour properties.

In Sect. 3 we applied theorem 3 to our example 2, where it remained to prove
simplicity of 115, on L;x. Now this gap is filled by the proofs that example 2
fulfills conditions I - VI.

These proofs show that under certain regularity restrictions (the product au-
tomata as in Fig. 10, 11(b) and 12(b) must be finite and deterministic) conditions I
- VI can be verified by semi-algorithms based on finite state methods. We only get
semi-algorithms but no algorithms, because the product automata are constructed
step by step and this procedure does not terminate if the corresponding product
automaton is not finite. These semi-algorithms only depend on L, SF, SG and P
and don’t refer to the general index sets I and K.

Conditions I - VI formalise our strategy to complete phases. There are several,
and partly more general, of such completion strategies to prove the statement of
corollary 8. The aim of condition I - VI was not only our special set of sufficient
conditions for uniformly parameterised behaviour properties but also to demon-
strate, how completion of phases strategies and corresponding success conditions
can be formalised by deterministic computations in shuffle automata.

6. CONCLUSIONS AND FUTURE WORK

In [Ochsenschléger and Rieke 2011] we have shown in particular that for self-similar
parameterised systems Lx the parameterised problem of verifying a uniformly pa-
rameterised safety property can be reduced to finite many fixed finite state problems.

Extending this, the main result of the present paper is a finite state verifica-
tion framework for uniformly parameterised behaviour properties capturing the full
spectrum of safety and liveness. This uniformly parameterisation exactly fits to the
scalability and reliability issues of complex systems or systems of systems such as
for example Cloud Computing platforms.

In this framework the concept of structuring cooperations into phases enables
completion of phases strategies. Consistent with this, corresponding success con-
ditions are formalised which produce finite state semi-algorithms (independent of
the concrete parameter setting) to verify behaviour properties of uniformly param-
eterised cooperations. The next step should be to integrate these semi-algorithms
in our SH verification tool [Ochsenschldger et al. 2000].

Besides safety and liveness properties so called hyperproperties [Clarkson and
Schneider 2008] are of interest because they give formalisations for non-interference
and non-inference. Further work could be to generalise the approach of this paper
to hyperproperties as well as to the Security Modeling Framework (SeMF) approach
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[Fuchs et al. 2009], where beside system behaviour also local views of agents and
agents knowledge about system behaviour are relevant.

7. APPENDIX

7.1  Proof of theorem 1

Let h : ¥* — ¥* be an alphabetic homomorphism, B C X* prefix closed and
w € ¥*. Then

(h(w)) ™ (h(B)) ={v" € £"|h(w)v" € h(B)}
={v' € ¥'*| there exists u € h™*({h(w)}) and v € v~ (B)
such that v = h(v)}

U {h(v) € 2" |v € u~Y(B)}

ueh=1({h(w)})

— U h(uY(B)) D h(w™'(B)). (93)

ueh=! ({h(w)})
Let x = yz € ¥*, then by (93)
h(z=1(B)) = h((y2)"1(B)) = h(z"'(y1(B))) C (h(2)) "' [h(y~"(B))).  (94)
If h(z=Y(B)) = (h(z))"1(h(B)) then
h(z=H(B)) = (h(y)h(2)) " (M(B)) = (h(2))"*[(h(y)) "' (h(B))] and by (94)

(h(2)) " [(h(y) " (R(B))] C (h(2)) " A(y~"(B))]- (95)
(93) implies h(y~'(B))  (h(y))~'(h(B)) and therefore
(h(2))" Ry~ (B))] € (h(2)) " [(h(y))~  (R(B))]- (96)
Now (95) and (96) imply
(h(2)) " Ay~ (B))] = (h(2)) " (h(y)) " (A(B))]. (97)

If x = yz € B then
h(z) € (h(y)) ™' ((B)). (98)
(97) and (98) prove theorem 1.

7.2 A sufficient condition for self-similarity

The proof of the following sufficient condition for self-similarity of Lk is given in
[Ochsenschliger and Ricke 2010].

Let PF = (®,Qpr,dpF,qrro, Frr) tesp. PG = (T',Qpc,drc,qrco, Fra) be
deterministic automata that accept PF resp. PG and let SF = (®, Qsr, dsr, gsro)
resp. SG = (', Qsa,dsG,qsco) be deterministic automata that accept SE' resp.
SG. If SF is deterministically based on PF w.r.t. PF resp. SG is deterministically
based on PG w.r.t. PG, then holds

Theorem 12. If for each (qsr, f) € Qsr ><]Ng2 and (¢sp, ') € Qsr ><]NOQ for which
ezists u,u’ € SF N (pre(PF))* such that qsp = dsr(qsro,u), ¢sp = dsr(qsro,u’'),
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f=Zla Y u), f' = Z[a~ (u')] and for which f > f' holds

{a € DN pre(PF) | dsr(qsr,a) is defined }
C {a € ®Npre(PF) | dsr(qsp,a) is defined }  (99a)
and for each qpr € Qpr with f'(gpr) > 0 is

{a € ®\ pre(PF) | dpr(qpr,a) and dsr(qsr,a) are defined }
C {a € ®\ pre(PF) | 6pr(qpr,a) and dsr(qsp,a) are defined }  (99b)

and if corresponding conditions w.r.t. SG and PG are fulfilled,
then Ly s self-similar.

In example 2 let PF' := w3(P) and PG := 7p(P), then PF is given in Fig. 11(a)
and PG is given in Fig. 12(a). In Sect. 5 we have shown that SF resp. SG is based
deterministically on PF resp. PG w.r.t. PF resp. PG. The product automaton of
SG and PG is given in Fig. 12(b).

To check the conditions of Theorem 12 w.r.t. SG and PG those pairs [(¢sq, f),
(s, f')] of states of the product automaton with f > f’ have to be considered.

Let for example (gsc, f) = (4 {(ITL, 1), (I, 1)}) and (gg, /') = (3, {(IIL, 1)}),
Then

{a e T Npre(PG) | 6sc(4,a) is defined} = 0
C{gs} ={a e Npre(PG) | ds6(3,a) is defined}

and

{ae Q| f'(q) > 0} = {111}
Additionally

{a €T\ pre(PG) | 6(I11,a) and d5c(4,a) are defined} = {g,}
={a €T\ pre(PG) | §(I11,a) and dsc(3,a) are defined}.

Hence the conditions of Theorem 12 are fulfilled for the pair [(4, {(III, 1), (II,1)}),
(3,{(I11,1)})]. Analogously this can be shown for all other pairs with f > f’. It also
can be proven that the conditions of Theorem 12 w.r.t. SF and PF are fulfilled.
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