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Behaviour Properties of Uniformly Parameterised
Cooperations

Peter Ochsenschläger and Roland Rieke
Fraunhofer-Institute for Secure Information Technology SIT

In this paper we consider safety and liveness properties, where possibilistic aspects of especially

liveness properties are captured by a modified satisfaction relation, called approximate satisfaction.
The systems in focus of this paper are uniformly parameterised cooperations. Such systems are

characterised by the composition of a set of identical components. These components interact in a

uniform manner described by the schedules of the partners. Such kind of interaction is typical for
scalable complex systems with cloud or grid structure. As a main result, a finite state verification

framework for uniformly parameterised behaviour properties is given. The keys to this framework

are structuring cooperations into phases and defining closed behaviours of systems. Finite state
semi-algorithms that are independent of the concrete parameter setting are presented to verify

behaviour properties of such uniformly parameterised cooperations.

Key Words: safety properties; possibilistic liveness properties; approximate satisfaction; uniformly
parameterised cooperations; uniformly parameterised behaviour properties; finite state verification

independent of the parameter settings

1. INTRODUCTION

The systems in focus of this paper are uniformly parameterised cooperations. Such
systems are characterised by (i) the composition of a set of identical components
(copies of a two-sided cooperation) and (ii) that these components “interact” in a
uniform manner (described by the schedules of the partners). Such kind of inter-
action is typical for scalable complex systems. As an example for such uniformly
parameterised systems of cooperations, e-commerce protocols can be considered.
In these protocols the two cooperation partners have to perform a certain kind of
financial transactions. As such a protocol should work for several partners in the
same manner, and the mechanism (schedule) to determine how one partner may
be involved in several cooperations is the same for each partner, the cooperation is
parameterised by the partners and the parameterisation should be uniform w.r.t.
the partners.

As a main result of the work presented, a finite state verification framework for
uniformly parameterised behaviour properties of cooperations is given. To capture
possibilistic aspects of especially liveness properties a modified satisfaction relation
is used. For safety properties this relation, which is called approximate satisfac-
tion, is equivalent to the usual one. The keys to this framework are structuring
cooperations into phases and defining closed behaviours of systems. In that frame-
work “completion of phases strategies” and corresponding “success conditions” are
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4 · P. Ochsenschläger and R. Rieke

formalised which produce finite state semi-algorithms that are independent of the
concrete parameter setting. These algorithms are used to verify behaviour proper-
ties of uniformly parameterised cooperations under certain regularity restrictions.

The subsequent paper is structured as follows. In Sect. 2 uniform parameteri-
sations of two-sided cooperations in terms of formal language theory is formalised
and a kind of self-similarity is considered. In this self-similarity concept, when only
actions of some selected partners are considered, the complex system of all partners
behaves like the smaller subsystem of the selected partners. Section 3 introduces the
concept of uniformly parameterised behaviour properties of cooperations. The con-
cept of structuring cooperations into phases given in Sect. 4 enables completion of
phases strategies which are presented in Sect. 5. Consistent with this, correspond-
ing success conditions are formalised which produce finite state semi-algorithms to
verify behaviour properties of uniformly parameterised cooperations.

2. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally described by the set of
its possible sequences of actions. Therefore L ⊂ Σ∗ holds where Σ is the set
of all actions of the system, and Σ∗ (free monoid over Σ) is the set of all finite
sequences of elements of Σ (words), including the empty sequence denoted by ε.
Σ+ := Σ∗ \ {ε}. Subsets of Σ∗ are called formal languages [Sakarovitch 2009].
Words can be composed: if u and v are words, then uv is also a word. This
operation is called the concatenation; especially εu = uε = u. Concatenation of
formal languages U, V ⊂ Σ∗ are defined by UV := {uv ∈ Σ∗|u ∈ U and v ∈ V }. A
word u is called a prefix of a word v if there is a word x such that v = ux. The set
of all prefixes of a word u is denoted by pre(u); ε ∈ pre(u) holds for every word u.
The set of possible continuations of a word u ∈ L is formalised by the left quotient
u−1(L) := {x ∈ Σ∗|ux ∈ L}.

Infinite words over Σ are called ω-words [Perrin and Pin 2004]. The set of all
infinite words over Σ is denoted Σω. An ω-language L over Σ is a subset of Σω.
For u ∈ Σ∗ and v ∈ Σω the left concatenation uv ∈ Σω is defined. It is also defined
for U ⊂ Σ∗ and V ⊂ Σω by UV := {uv ∈ Σω|u ∈ U and v ∈ V }.

For an ω-word w the prefix set is given by the formal language pre(w) which
contains every finite prefix of w. The prefix set of an ω-language L ⊂ Σω is
accordingly given by pre(L) = {u ∈ Σ∗| it exist v ∈ Σω with uv ∈ L}. For M ⊂
Σ∗ the ω-power Mω ⊂ Σω is the set of all “infinite concatenations” of arbitrary
elements of M . More formally, the set of all infinite words over Σ is defined by
Σω = {(ai)i∈N|ai ∈ Σ for each i ∈ N}, where N denotes the set of natural numbers.
On Σω a left concatenation with words from Σ∗ is defined. Let u = b1 . . . bk ∈ Σ∗

with k ≥ 0 and bj ∈ Σ for 1 ≤ j ≤ k and w = (ai)i∈N ∈ Σω with ai ∈ Σ for
all i ∈ N, then uw = (xj)j∈N ∈ Σω with xj = bj for 1 ≤ j ≤ k and xj = aj−k
for k < j. For w ∈ Σω the prefix set pre(w) ⊂ Σ∗ is defined by pre(w) = {u ∈
Σ∗| it exists v ∈ Σω with uv = w}. For L ⊂ Σ∗ the ω-language Lω ⊂ Σω is defined
by Lω = {(ai)i∈N ∈ Σω| it exists a strict monotonically increasing function f :
N → N with a1 . . . af(1) ∈ L and af(i)+1 . . . af(i+1) ∈ L for each i ∈ N} . f : N →
N is called strict monotonically increasing if f(i) < f(i+ 1) for each i ∈ N.

Formal languages which describe system behaviour have the characteristic that

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations · 5

pre(u) ⊂ L holds for every word u ∈ L. Such languages are called prefix closed.
System behaviour is thus described by prefix closed formal languages.

Different formal models of the same system are partially ordered with respect
to different levels of abstraction. Formally, abstractions are described by so called
alphabetic language homomorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗ with
h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ) ⊂ Σ′∪{ε}. So they are uniquely defined
by corresponding mappings h : Σ −→ Σ′∪{ε}. In the following we denote both the
mapping h and the homomorphism h∗ by h. Inverse homomorphism are denoted
by h−1. Let L be a language over the alphabet Σ′. Then h−1(L) is the set of words
w ∈ Σ∗ such that h(w) ∈ L. In this paper we consider a lot of alphabetic language
homomorphisms. So for simplicity we tacitly assume that a mapping between free
monoids is an alphabetic language homomorphism if nothing contrary is stated.

To describe a two-sided cooperation, let Σ = Φ ·∪ Γ where Φ is the set of actions
of cooperation partner F and Γ is the set of actions of cooperation partner G. Now
a prefix closed language L ⊂ (Φ ·∪ Γ)∗ formally defines a two-sided cooperation.

Example 1. Let Φ = {fs, fr} and Γ = {gr, gs} and hence Σ = {fs, fr, gr, gs}. An
example for a cooperation L ⊂ Σ∗ is now given by the automaton in Fig. 1. It
describes a simple handshake between F (client) and G (server), where a client
may perform the actions fs (send a request), fr (receive a result) and a server may
perform the corresponding actions gr (receive a request) and gs (send the result).

Please note that in the following we will denote initial states by a short incoming
arrow and final states by double circles. In this automaton all states are final states,
since L is prefix closed.

fs gr

gsfr

Fig. 1. Automaton for 1-1-cooperation L

For parameter sets I, K and (i, k) ∈ I×K let Σik denote pairwise disjoint copies

of Σ. The elements of Σik are denoted by aik and ΣIK :=
⋃̇

(i,k)∈I×K
Σik. The index

ik describes the bijection a ↔ aik for a ∈ Σ and aik ∈ Σik. Now LIK ⊂ Σ∗IK
(prefix-closed) describes a parameterised system. To avoid pathological cases we
generally assume parameter and index sets to be non empty.

For a cooperation between one partner of type F with two partners of type G in
example 1 let

Φ{1}{1,2} ={fs11, fr11, fs12, fr12},
Γ{1}{1,2} ={gr11, gs11, gr12, gs12} and

Σ{1}{1,2} =Φ{1}{1,2} ·∪ Γ{1}{1,2}.

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



6 · P. Ochsenschläger and R. Rieke

fs12

gr12

gs12

fr12

fs11gr11

gs11 fr11

Fig. 2. Automaton for 1-2-cooperation L{1}{1,2}

A 1-2-cooperation, where each pair of partners cooperates restricted by L and
each partner has to finish the handshake it just is involved in before entering a
new one, is now given (by reachability analysis) by the automaton in Fig. 2 for
L{1}{1,2}. It shows that one after another client 1 runs a handshake either with
server 1 or with server 2. Figure 3 in contrast depicts an automaton for a 2-1-
cooperation L{1,2}{1} with the same overall number of partners involved but two of
type F and one partner of type G. Figure 3 is more complex than Fig. 2 because
client 1 and client 2 may start a handshake independently of each other, but server
1 handles these handshakes one after another. A 3-3-cooperation with the same
simple behaviour of partners already requires 916 states and 3168 state transitions
(computed by the SH verification tool [Ochsenschläger et al. 2000]).

fs11

fs21

fr21

fr11

fr11
fr21

gs11

fr21
gs21

fr11

fr21 gr11

fr11

gr21

fs11

fs21

gs21

gs11

fs11

gs21

fs21

gs11
gr21

gr11

gr21

fs11

gr11

fs21

Fig. 3. Automaton for the 2-1-cooperation L{1,2}{1}

For (i, k) ∈ I ×K, let πIKik : Σ∗IK → Σ∗ with

πIKik (ars) =

{
a | ars ∈ Σik
ε | ars ∈ ΣIK \ Σik

.

For uniformly parameterised systems LIK we generally want to have

LIK ⊂
⋂

(i,k)∈I×K

((πIKik )−1(L))

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.
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because from an abstracting point of view, where only the actions of a specific Σik
are considered, the complex system LIK is restricted by L.

In addition to this inclusion LIK is defined by local schedules that determine
how each “version of a partner” can participate in “different cooperations”. More
precisely, let SF ⊂ Φ∗, SG ⊂ Γ∗ be prefix closed.

For (i, k) ∈ I ×K, let ϕIKi : Σ∗IK → Φ∗ and γIKk : Σ∗IK → Γ∗ with

ϕIKi (ars) =

{
a | ars ∈ Φ{i}K
ε | ars ∈ ΣIK \ Φ{i}K

and

γIKk (ars) =

{
a | ars ∈ ΓI{k}
ε | ars ∈ ΣIK \ ΓI{k}

,

where ΦIK and ΓIK are defined correspondingly to ΣIK .

Definition 1 (Uniformly parameterised cooperation LIK).
Let I, K be finite parameter sets, then

LIK :=
⋂

(i,k)∈I×K

(πIKik )−1(L)

∩
⋂
i∈I

(ϕIKi )−1(SF ) ∩
⋂
k∈K

(γIKk )−1(SG)

By this definition

L{1}{1} = (π
{1}{1}
11 )−1(L)

∩ (ϕ
{1}{1}
1 )−1(SF ) ∩ (γ

{1}{1}
1 )−1(SG).

As we want L{1}{1} being isomorphic to L by the isomorphism

π
{1}{1}
11 : Σ∗{1}{1} → Σ∗

we additionally need

(π
{1}{1}
11 )−1(L) ⊂ (ϕ

{1}{1}
1 )−1(SF ) and

(π
{1}{1}
11 )−1(L) ⊂ (γ

{1}{1}
1 )−1(SG).

This is equivalent to πΦ(L) ⊂ SF and πΓ(L) ⊂ SG , where πΦ : Σ∗ → Φ∗ and
πΓ : Σ∗ → Γ∗ are defined by

πΦ(a) =

{
a | a ∈ Φ
ε | a ∈ Γ

and πΓ(a) =

{
a | a ∈ Γ
ε | a ∈ Φ

.

So we complete Def. 1 by the additional conditions

πΦ(L) ⊂ SF and πΓ(L) ⊂ SG .

Schedules SF and SG that fit to the cooperations given in Example 1 are depicted
in Figs. 4(a) and 4(b). Here we have πΦ(L) = SF and πΓ(L) = SG .

The system LIK of cooperations is a typical example of a complex system. It
consists of several identical components (copies of the two-sided cooperation L),
which “interact” in a uniform manner (described by the schedules SF and SG and
by the homomorphisms ϕIKi and γIKk ).

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



8 · P. Ochsenschläger and R. Rieke

fs

fr

(a) Schedule SF

gr

gs

(b) Schedule SG

Fig. 4. Automata SF and SG for the schedules SF and SG

Remark 1. It is easy to see that LIK is isomorphic to LI′K′ if I is isomorphic to
I ′ and K is isomorphic to K ′. More precisely, let ιII′ : I → I ′ and ιKK′ : K → K ′ be
bijections and let ιIKI′K′ : Σ∗IK → Σ∗I′K′ be defined by

ιIKI′K′(aik) := aιI
I′ (i)ι

K
K′ (k) for aik ∈ ΣIK .

Then ιIKI′K′ is a isomorphism and ιIKI′K′(LIK) = LI′K′ . The set of all these isomor-
phisms ιIKI′K′ defined by corresponding bijections ιII′ and ιKK′ is denoted by IIKI′K′ .

To illustrate the concepts of this paper, we consider the following example.

Example 2. We consider a system of servers, each of them managing a resource,
and clients, which want to use these resources. We assume that as a means to
enforce a given privacy policy a server has to manage its resource in such a way
that no client may access this resource during it is in use by another client ( privacy
requirement). This may be required to ensure anonymity in such a way that clients
and their actions on a resource cannot be linked by an observer.

We formalise this system at an abstract level, where a client may perform the
actions fx (send a request), fy (receive a permission) and fz (send a free-message),
and a server may perform the corresponding actions gx (receive a request), gy (send
a permission) and gz (receive a free-message). The possible sequences of actions of
a client resp. of a server are given by the automaton SF resp. SG. The automaton
L describes the 1-1-cooperation of one client and one server (see Fig. 5). These
automata define the client-server system LIK .

1

2

6

3

5

47 8

fx

gx

gy

fy

fz

fxgz

gx

gz gz

(a) 1-1-cooperation L

1 2

3

fx

fyfz

(b) Schedule SF

1 2

3 4

gx

gy
gz

gx

gz

(c) Schedule SG

Fig. 5. Automata L, SF and SG for Example 2

By self-similary [Ochsenschläger and Rieke 2010; 2011] we formalise that for
I ′ ⊂ I and K ′ ⊂ K from an abstracting point of view, where only the actions of

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.
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ΣI′K′ are considered, the complex system LIK behaves like the smaller subsystem
LI′K′ . Therefore we now consider special abstractions on LIK .

Definition 2 (Projection abstraction).
For I ′ ⊂ I and K ′ ⊂ K let ΠIK

I′K′ : Σ∗IK → Σ∗I′K′ with

ΠIK
I′K′(ars) =

{
ars | ars ∈ ΣI′K′

ε | ars ∈ ΣIK \ ΣI′K′ .

Definition 3 (Self-similarity).
A uniformly parameterised cooperation LIK is called self-similar iff

ΠIK
I′K′(LIK) = LI′K′ for each I ′ ×K ′ ⊂ I ×K.

Self-similarity is a generalisation of πIKik (LIK) = L.
In [Ochsenschläger and Rieke 2010] a sufficient condition for self-similarity is

given (see appendix), which is based on deterministic computations in shuffle au-
tomata. Under certain regularity restrictions this condition can be verified by a
semi-algorithm. In the appendix we show that example 2 is self-similar.

3. UNIFORMLY PARAMETERISED BEHAVIOUR PROPERTIES

Usually behaviour properties of systems are divided into two classes: safety and
liveness properties [Alpern and Schneider 1985]. Intuitively a safety property stip-
ulates that “something bad does not happen” and a liveness property stipulates
that “something good eventually happens”.

In [Alpern and Schneider 1985] both classes, as well as system behaviour, are
formalised in terms of ω-languages, because especially for liveness properties infinite
sequences of actions have to be considered.

Definition 4 (linear satisfaction). According to [Alpern and Schneider 1985], a
property E of a system is a subset of Σω. If S ⊂ Σω represents the behaviour of a
system, then S linearly satisfies E iff S ⊂ E.

In [Alpern and Schneider 1985] it is furthermore shown that each property E is
the intersection of a safety and a liveness property.

Safety properties Es ⊂ Σω are of the form Es = Σω \ FΣω with F ⊂ Σ∗, where
F is the set of “bad things”.

Liveness properties El ⊂ Σω are characterised by pre(El) = Σ∗. A typical exam-
ple of a liveness property is

El = (Σ∗M)ω with ∅ 6= M ⊂ Σ+. (1)

This El formalises that “always eventually a finite action sequence m ∈ M hap-
pens”.

As we describe system behaviour by prefix closed languages B ⊂ Σ∗ we have to
“transform” B into an ω-language to apply the framework of [Alpern and Schneider
1985]. This can be done by the Eilenberg-limit lim(B) [Perrin and Pin 2004].

For prefix closed languages B ⊂ Σ∗ their Eilenberg-limit is defined by

lim(B) := {w ∈ Σω|pre(w) ⊂ B}.
Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



10 · P. Ochsenschläger and R. Rieke

If B contains maximal words u (deadlocks), then these u are not “captured” by
lim(B). Formally the set max(B) of all maximal words of B is defined by

max(B) := {u ∈ B| if v ∈ B with u ∈ pre(v) then v = u}.

Now, using a dummy action #, B can be unambiguously described by

B̂ := B ∪max(B)#∗ ⊂ Σ̂∗, (2)

where # /∈ Σ and Σ̂ := Σ ·∪{#}. By this definition in Σ̂ the maximal words of B
are continued by arbitrary many #’s. So B̂ does not contain maximal words. By
this construction we now can assume that system behaviour is formalised by prefix
closed languages B̂ ⊂ Σ∗#∗ ⊂ Σ̂∗ without maximal words, and the corresponding
infinite system behaviour S ⊂ Σω is given by S := lim(B̂).

For such an S and safety properties

Es = Σ̂ω \ F Σ̂ω with F ⊂ Σ̂∗

it holds

S ⊂ Es iff S ∩ F Σ̂ω = ∅ iff pre(S) ∩ F = ∅ iff B̂ ∩ F = ∅. (3)

If F ⊂ Σ∗ then B̂ ∩ F = ∅ iff B ∩ F = ∅. So

S ⊂ Es iff B ∩ F = ∅ for F ⊂ Σ∗. (4)

Let h : Σ∗ → Σ′∗ be an alphabetic homomorphism and F ′ ⊂ Σ′∗, then h(L)∩F ′ =
∅ iff L ∩ h−1(F ′) = ∅. As h−1(F ′) ⊂ Σ∗, (4) implies

lim(B̂) ⊂ Σ̂ω \ h−1(F ′)Σ̂ω iff lim(ĥ(B)) ⊂ Σ̂′ω \ F ′Σ̂′ω. (5)

So by (4) and (5) our approach in [Ochsenschläger and Rieke 2011] is equivalent to
the ω-notation of safety properties described by F ⊂ Σ∗, and the relation S ⊂ Es ,
is compatible with abstractions with respect to such safety properties.

Linear satisfaction (cf. Def. 4) is too strong for systems in our focus with respect
to liveness properties, because S = lim(L̂) can contain “unfair” infinite behaviours,
which are not elements of El .

Let for example I ⊃ {1, 2} and K ⊃ {1} then lim(L̂IK) ∩ Σω{1}{1} 6= ∅ (infinite

action sequences, where only the partners with index 1 cooperate).

If El = Σ∗IKΣ{2}{1}Σ
ω
IK then lim(L̂IK) 6⊂ El .

Instead of neglecting such unfair infinite behaviours in [Nitsche and Ochsen-
schläger 1996] we defined a weaker satisfaction relation, called approximate satis-
faction, which implicitly expresses some kind of fairness.

Definition 5 (approximate satisfaction). A system S ⊂ Σ̂ω approximately satisfies
a property E ⊂ Σ̂ω iff each finite behaviour (finite prefix of an element of S) can
be continued to an infinite behaviour, which belongs to E. More formally, pre(S) ⊂
pre(S ∩ E).

In [Nitsche and Ochsenschläger 1996] it is shown, that

for safety properties linear satisfaction and

approximate satisfaction are equivalent. (6)

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations · 11

With respect to approximate satisfaction liveness properties stipulate that “some-
thing good” eventually is possible.

Concerning properties E not of the form E = Σ̂ω\F Σ̂ω with F ⊂ Σ∗ approximate
satisfaction is not compatible with abstractions in such sense, that there exist pairs
of concrete and abstract systems related by homomorphisms such that the abstract
system approximately satisfies such a property E but the concrete system does not
approximately satisfy a “corresponding” property. In [Ochsenschläger 1992] and
[Nitsche and Ochsenschläger 1996] such examples are discussed and a property of
abstractions is given that overcomes this problem. This property is called simplicity
of an alphabetic homomorphism h : Σ∗ → Σ′∗ with respect to a prefix closed
language B ⊂ Σ∗ and it is formalised in terms of continuation possibilities in B
and h(B).

Definition 6. An alphabetic language homomorphism h : Σ∗ → Σ′∗ is sim-
ple on B ⊂ Σ∗ iff for each w ∈ B there exists u ∈ h(w)−1(h(B)) such that
u−1(h(w−1)(B))) = u−1(h(w)−1(h(B))).

In [Ochsenschläger 1992] some sufficient conditions for simplicity are given. For
our purpose the following is helpful (for the proof cf. the appendix)

Theorem 1. If for each y ∈ B there exists z ∈ y−1(B) with h((yz)−1(B)) =
(h(yz))−1(h(B)) then h is simple on B.

To formulate the implication of simplicity we have to “extend” h to Σ̂ω.

Let ĥ : Σ̂∗ → Σ̂′
∗

be the homomorphisms defined by ĥ(a) := h(a) for a ∈ Σ and

ĥ(#) := #.

For x ∈ Σ̂ω either lim(ĥ(pre(x))) = {y} ⊂ Σ̂′
ω

or max(ĥ(pre(x))) = {z} ⊂ Σ′∗. (7)

Now let ĥω : Σ̂ω → Σ̂′
ω

be defined for x ∈ Σ̂ω by ĥω(x) := y if lim(ĥ(pre(x))) =

{y} ⊂ Σ̂′
ω

and ĥω(x) := z{#}ω if max(ĥ(pre(x))) = {z} ⊂ Σ′∗.

ĥω is not an homomorphism but it has the following properties:
If w = uv ∈ Σ̂ω with u ∈ Σ̂∗ and v ∈ Σ̂ω then

ĥω = ĥ(u)ĥω(v). (8)

If w′ = u′a′v′ ∈ Σ̂′
ω

with u′ ∈ Σ̂′
∗
, a′ ∈ Σ′, v′ ∈ Σ̂′

ω
and w ∈ Σ̂ω with ĥω(w) = w′

then

w = uav with u ∈ Σ̂∗, a ∈ Σ, v ∈ Σ̂ω,

ĥ(u) = u′, h(a) = a′ and ĥω(v) = v′. (9)

In [Nitsche and Ochsenschläger 1996] the following has been proven:

Theorem 2. If h is simple on a regular prefix closed language B then

pre(lim(ĥ(B))) ⊂ pre(lim(ĥ(B)) ∩ E′) implies

pre(lim(B̂)) ⊂ pre(lim(B̂) ∩ ĥ−1
ω (E′))

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



12 · P. Ochsenschläger and R. Rieke

for each E′ ⊂ Σ̂′
ω

.

Here ĥ−1
ω (E′), which is approximately satisfied by the concrete system lim(B̂), is

the corresponding property to E′, which is approximately satisfied by the abstract

system lim(ĥ(B)). It has been proven that simplicity of h on B is necessary for the
set of implications in theorem 2.

In [Ochsenschläger and Rieke 2011] safety properties are formalised by formal
languages F ⊂ Σ∗ and it is defined that a prefix closed language B ⊂ Σ∗ satisfies
such a safety property F iff L ∩ F = ∅. By (4) and (6) this is equivalent to the
statement that lim(L̂) approximately satisfies the safety property

Σ̂ω \ F Σ̂ω. (10)

In [Ochsenschläger and Rieke 2011] uniformly parameterised safety properties are
generated by safety properties F̊ ⊂ Σ∗

I̊K̊
and defined in such a way that a param-

eterised system LIK ⊂ Σ∗IK satisfies the generated parameterised safety property

iff LIK satisfies each safety property (ΠIK
I′K′)

−1(ιI̊K̊I′K′(F̊ )) with I ′ ⊂ I, K ′ ⊂ K

and ιI̊K̊I′K′ ∈ I I̊K̊I′K′ , where I I̊K̊I′K′ is the set of all isomorphisms ιI̊K̊I′K′ : Σ∗
I̊K̊
→ Σ∗I′K′

generated by bijections ιI̊I′ : I̊ → I ′ and ιK̊K′ : K̊ → K ′ in such a way that

ιI̊K̊I′K′(aik) := a
ιI̊
I′ (i)ι

K̊
K′ (k)

(11)

for aik ∈ ΣI̊K̊ . We now want to generalise this idea to arbitrary system properties

formulated as subsets of Σ̂ω. First of all we notice that for index sets I̊, I ′, K̊

and K ′ each bijection ιI̊I′ : I̊ → I ′ and ιK̊K′ : K̊ → K ′ generates an isomorphism

ι̂I̊K̊I′K′ : Σ̂∗
I̊K̊
→ Σ̂∗I′K′ by ι̂I̊K̊I′K′(a) := ιI̊K̊I′K′(a) for a ∈ ΣI̊K̊ and ι̂I̊K̊I′K′(#) := #.

For each w ∈ Σ̂ω
I̊K̊

lim(ι̂I̊K̊I′K′(pre(w))) = {w′} ∈ Σ̂ωI′K′ .

Now the mapping ι̂ω
I̊K̊
I′K′ : Σ̂ω

I̊K̊
→ Σ̂ωI′K′ defined for each w ∈ Σ̂ω

I̊K̊
by

ι̂ω
I̊K̊
I′K′(w) := w′ with lim(ι̂I̊K̊I′K′(pre(w))) = {w′},

is a bijection. The set of all these bijections ι̂ω
I̊K̊
I′K′ we denote by Îω

I̊K̊

I′K′ .

ι̂ω
I̊K̊
I′K′ is “like an isomorphism” because for each w ∈ Σ̂ω

I̊K̊
holds:

w = uv with u ∈ Σ̂∗
I̊K̊

and v ∈ Σ̂ω
I̊K̊

iff ι̂ω
I̊K̊
I′K′(w) = ι̂I̊K̊I′K′(u)ι̂ω

I̊K̊
I′K′(v). (12)

For finite index sets I̊, I, K̊ and K let

Î[(I̊ , K̊), (I,K)] :=
⋃

I′⊂I,K′⊂K
Îω

I̊K̊

I′K′ .

Note that

Î[(I̊ , K̊), (I,K)] = ∅ if |I̊| > |I| or |K̊| > |K|, (13)

where |I| denotes the cardinality of the set I.

Now let E̊ ⊂ Σ̂I̊K̊
ω

, with fixed index sets I̊ and K̊, be an arbitrary property.
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Motivated by theorem 2 and [Ochsenschläger and Rieke 2011] for finite index sets
I and K we define

E E̊IK := [((Π̂IK
I′K′)ω)−1(ι̂ω

I̊K̊
I′K′(E̊))]

ι̂ωI̊K̊
I′K′∈Î[(I̊,K̊),(I,K)]

. (14)

We say that

lim(L̂IK) approximately satisfies such a family E E̊IKof properties iff

lim(L̂IK) approximately satisfies each of the properties

((Π̂IK
I′K′)ω)−1(ι̂ω

I̊K̊
I′K′(E̊)) for ι̂ω

I̊K̊
I′K′ ∈ Î[(I̊ , K̊), (I,K)]. (15)

On account of (13) it makes sense to consider finite families of E E̊IK .

Definition 7 (uniformly parameterised behaviour property).

Let T , I and K be finite index sets. For each t ∈ T let E̊t ⊂ Σ̂I̊tK̊t

ω
and E E̊t

IK

be defined as in (14). Then EIK := (E E̊t

IK)t∈T is called a uniformly parameterised
behaviour property.

We say that lim(L̂IK) approximately satisfies EIK iff lim(L̂IK) approximately

satisfies each E E̊t

IK for t ∈ T as defined in (15).

If E̊ = Σ̂I̊K̊
ω
\ F̊ Σ̂I̊K̊

ω
with F̊ ⊂ Σ∗

I̊K̊
then by (12)

ι̂ω
I̊K̊
I′K′(E̊) = Σ̂I′K′

ω
\ ιI̊K̊I′K′(F̊ )Σ̂I′K′

ω

and by (8) and (9)

((Π̂IK
I′K′)ω)−1(ι̂ω

I̊K̊
I′K′(E̊)) = Σ̂IK

ω
\ (ΠIK

I′K′)
−1(ιI̊K̊I′K′(F̊ ))Σ̂IK

ω
.

Now (10) and (11) imply that definition 7 generalises the corresponding defini-
tions of [Ochsenschläger and Rieke 2011].

If ΠIK
I′K′ is simple on a regular LIK for I ′ ⊂ I and K ′ ⊂ K and if E̊ ⊂

Σ̂I̊K̊
ω

is an arbitrary property, then by theorem 2 lim(L̂IK) approximately satis-

fies ((Π̂IK
I′K′)ω)−1(ι̂ω

I̊K̊
I′K′(E̊)) if lim( ̂ΠIK

I′K′(LIK)) approximately satisfies ι̂ω
I̊K̊
I′K′(E̊).

If LIK is self-similar, then ΠIK
I′K′(LIK) = LI′K′ for each I ′ ⊂ I and K ′ ⊂ K.

If ι̂ω
I̊K̊
I′K′ ∈ Îω

I̊K̊

I′K′ then by (12) lim(L̂I′K′) approximately satisfies ι̂ω
I̊K̊
I′K′(E̊) iff

lim(L̂I̊K̊) approximately satisfies E̊. So we get

Theorem 3. Let I, K, I̊ and K̊ be finite index sets with |I̊| ≤ |I| and |K̊| ≤ |K|.
Let LIK be a uniformly parameterised, self-similar regular system of cooperations
and let ΠIK

I′K′ simple on LIK for each I ′ ⊂ I and K ′ ⊂ K with |I̊| = |I ′| and

|K̊| = |K ′|. Then for E̊ ⊂ Σ̂I̊K̊
ω

lim(L̂IK) approximately satisfies E E̊IK if lim(L̂I̊K̊)

approximately satisfies E̊.

Remark 2. By the well known closure properties of the family of regular languages
[Sakarovitch 2009] LIK is regular if it is defined by regular languages L, SF , SG.

Self-similarity of LIK is given by sufficient conditions in [Ochsenschläger and
Rieke 2010] (see appendix).
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14 · P. Ochsenschläger and R. Rieke

If LIK is regular and E̊ ω-regular [Perrin and Pin 2004] then approximately

satisfaction of E̊ by lim(L̂I̊K̊) can be checked by finite state methods [Perrin and
Pin 2004] (intersection of ω-regular languages).

Many practical liveness properties are of the form (1). Let us consider a prefix
closed language B ⊂ Σ∗ and a formal language ∅ 6= M ⊂ Σ+. By definition 5
lim(B̂) approximately satisfies (Σ̂∗M)ω iff each u ∈ B is prefix of v ∈ B with

v−1(B) ∩M 6= ∅. (16)

If B and M are regular sets, then (16) can be checked by usual automata algo-
rithms [Sakarovitch 2009] without referring to lim(B̂) ∩ (Σ̂∗M)ω.

If h : Σ∗ → Σ′∗ is an alphabetic homomorphism and M ′ ⊂ Σ+, then by (8) and
(9)

ĥ−1
ω ((Σ̂′

∗
M ′)ω) = (Σ̂∗h−1(M ′))ω ⊂ Σ̂ω, (17)

which is also of the form (1).
Let us now consider the prefix closed language L ⊂ Σ∗ of example 2 and the

“phase” P ⊂ Σ+ given by the automaton P in Fig. 6.

I II III IV V VI VII
fx gx gy fy fz gz

Fig. 6. Automaton P

lim(L̂) approximately satisfies the liveness property (Σ̂∗P )ω ⊂ Σ̂∗,

because the automaton L in Fig. 5(a) is strongly connected and P ⊂ L. (18)

(18) states that in the 1-1-cooperation lim(L̂) always eventually a “complete run
through the phase P” is possible.

Let now

P̊ := (π
{1}{1}
11 )−1P ⊂ Σ+

{1}{1} and

E̊ := (Σ̂{1}{1}
∗
P̊ )ω ⊂ Σ̂{1}{1}

ω
. (19)

As π
{1}{1}
11 : Σ∗{1}{1} → Σ∗ is an isomorphism then by (18) lim(L̂{1}{1}) approxi-

mately satisfies E̊.
By remark 2 LIK is regular in example 2, and in the appendix it is shown that

LIK is self-similar. So if we prove simplicity of ΠIK
I′K′ on LIK , which will be done

in section 5 then by theorem 3

lim(L̂IK) approximately satisfies E E̊IK (20)

for each finite indes set I and K.
By (17) (20) states that for each pair of clients and servers always eventually a

“complete run through a phase P” is possible w.r.t. the abstraction, where only
the actions of this client and server are considered.
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4. COOPERATIONS BASED ON PHASES

The schedule SG of example 2 shows that a server may cooperate with two clients
partly in an interleaving manner. To formally capture such behaviour, in [Ochsen-
schläger and Rieke 2010] cooperations are structured into phases. This formalism is
based on iterated shuffle-products [Jantzen 1985] and leads in section 5 to sufficient
conditions for simplicity of ΠIK

I′K′ on LIK .

Definition 8.

P� := ΘN[
⋂
t∈N

(τNt )−1(P ∪ {ε})] for P ⊂ Σ∗.

For the definition of the homomorphisms ΘN and τNt , let t ∈ N, and for each t
let Σt be a copy of Σ. Let all Σt be pairwise disjoint. The index t describes the
bijection a↔ at for a ∈ Σ and at ∈ Σt.

Let ΣN :=
⋃̇
t∈N

Σt, and for each t ∈ N let the homomorphisms τNt and ΘN be

defined by

τNt : Σ∗N → Σ∗ with τNt (as) =

{
a | as ∈ Σt
ε | as ∈ ΣN \ Σt

and ΘN : Σ∗N → Σ∗ with ΘN(at) := a for at ∈ Σt and t ∈ N.

I II III
a b

Fig. 7. Automaton P for P= {ab}

Let for example P = {ab} be given by the Automaton P in Fig. 7. Then aabb ∈
P� because aabb = ΘN(a1a2b2b1) and τN1 (a1a2b2b1) = τN2 (a1a2b2b1) = ab ∈ P and
τNt (a1a2b2b1) = ε for t ∈ N \ {1, 2}.
a1a2b2b1 is a structured representation of aabb (see definition 10).
Definition 8 looks different to the usual one of iterated shuffle products, as for

example in [Jantzen 1985]. But it is easy to see that they are equivalent. We use
our kind of definition, as it is more adequate to the considerations in this paper.

Definition 9.
A prefix closed language B ⊂ Σ∗ is based on a phase P ⊂ Σ∗, iff B = pre(P�∩B).

If B is based on P , then B ⊂ pre(P�) = (pre(P ))� and
B = pre(P ))� ∩B.

a

b

Fig. 8. Automaton B for B

Let for example P = {ab} and B be given by the automaton B in Fig. 8. Then
P� ∩B = {ab}∗. This implies that B is based on P .
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16 · P. Ochsenschläger and R. Rieke

Generally each B is based on infinitely many phases.

– If B is based on P then B is based on P ′ for each P ′ ⊃ P .

– Each B ⊂ Σ∗ is based on Σ because Σ� = Σ∗.

The appropriate phases for our purposes will be discussed in Sect. 5.
For the subsequent lemmata, which are proven in [Ochsenschläger and Rieke

2010] and will be used in Sect. 5, let S and T be arbitrary index sets and M ⊂ Σ∗.
Let τTt : Σ∗T → Σ∗ for t ∈ T and ΘT : Σ∗T → Σ∗ be defined like τNt and ΘN.
For each S′ ⊂ S and T ′ ⊂ T let

ΘS′×T ′
S′ : Σ∗S′×T ′ → Σ∗S′ with ΘS′×T ′

S′ (a(s,t)) := as for each a(s,t) ∈ ΣS′×T ′ and

ΘS′×T ′
T ′ : Σ∗S′×T ′ → Σ∗T ′ with ΘS′×T ′

T ′ (a(s,t)) := at for each a(s,t) ∈ ΣS′×T ′ .

Lemma 1 (Shuffle-lemma 1).
Let S, T arbitrary index sets and M ⊂ Σ∗, then⋂

s∈S
(τSs )−1[ΘT (

⋂
t∈T

(τTt )−1(M))] = ΘS×T
S [

⋂
(s,t)∈S×T

(τS×T(s,t) )−1(M)], (21a)

and, since ΘS×T = ΘS ◦ΘS×T
S ,

ΘS [
⋂
s∈S

(τSs )−1[ΘT (
⋂
t∈T

(τTt )−1(M))]] = ΘS×T [
⋂

(s,t)∈S×T

(τS×T(s,t) )−1(M)]. (21b)

Definition 10. Let S be an arbitrary index set. For each x ∈ ΘS [
⋂
s∈S

(τSs )−1(M)]

there exists u ∈
⋂
s∈S

(τSs )−1(M) such that x = ΘS(u). We call u a structured rep-

resentation of x w.r.t. S. For x ∈ Σ∗ let SRSM (x) := (ΘS)−1(x) ∩ [
⋂
s∈S

(τSs )−1(M)].

It is the set of all structured representations of x w.r.t. S and fixed M ⊂ Σ∗.

Now x ∈ P� iff there exists a countable index set S with SRS(P∪{ε})(x) 6= ∅
(see Lemma 2). If x ∈ P�, then generally SRS(P∪{ε})(x) contains more than one
element.

Lemma 2 (Shuffle-lemma 2).
If a bijection between S and T exists, then ΘS [

⋂
s∈S

(τSs )−1(M)] = ΘT [
⋂
t∈T

(τTt )−1(M)]

for M ⊂ Σ∗.

For an arbitrary index set S and S′ ⊂ S let

ΠS
S′ : Σ∗S → Σ∗S′ with ΠS

S′(as) =

{
as | as ∈ ΣS′

ε | as ∈ ΣS \ ΣS′
.

Lemma 3 (Shuffle-lemma 3).
Let M ⊂ Σ∗, S, T index sets and y ∈ Σ∗S×T with τS×T(s,t) (y) ∈ M for each (s, t) ∈
S × T and x = ΘS×T

S (y) ∈ Σ∗S, then ΠS×T
S′×T (y) ∈ SRS

′×T
M (ΘS′(ΠS

S′(x))) for each
S′ ⊂ S.

Remark 3. The hypotheses of this lemma are given by (21a).
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In [Ochsenschläger and Rieke 2010] an automaton representation A� for P� is
given, which will illustrate “how a language B is based on a phase P”.

Let P ⊂ Σ∗ and A = (Σ, Q,∆, q0, F ) with ∆ ⊂ Q × Σ × Q, q0 ∈ Q and F ⊂ Q
be an (not necessarily finite) automaton that accepts P . To exclude pathological
cases we assume ε /∈ P 6= ∅. A consequence of this is in particular that q0 /∈ F .

For the construction of A� the set NQ0 (set of all functions from Q in N0) plays

a central role. In NQ0 we distinguish the following functions:

0 ∈ NQ0 with 0(x) = 0 for each x ∈ Q, and for q ∈ Q the function

1q ∈ NQ0 with 1q(x) =

{
1 | x = q
0 | x ∈ Q \ {q} .

As usual for numerical functions, a partial order as well as addition and partial
subtraction are defined:

For f, g ∈ NQ0 let

f > g iff f(x) > g(x) for each x ∈ Q,

f + g ∈ NQ0 with (f + g)(x) := f(x) + g(x) for each x ∈ Q, and

for f > g, f − g ∈ NQ0 with (f − g)(x) := f(x)− g(x) for each x ∈ Q.

The key idea of A� is, to record in the functions of NQ0 how many “open phases”
are in each state q ∈ Q respectively. Its state transition relation ∆� is composed
of four subsets whose elements describe

– the “entry into a new phase”,

– the “transition within an open phase”,

– the “completion of an open phase”,

– the “entry into a new phase with simultaneous completion of this phase”.

With these definitions we now define the shuffle automaton A� as follows:

Definition 11 (shuffle automaton).

The shuffle automaton A� = (Σ,NQ0 ,∆
�, 0, {0}) w.r.t. A is an automaton with

infinite state set NQ0 , the initial state 0, which is the only final state and

∆� :={(f, a, f + 1p) ∈ NQ0 × Σ×NQ0 |
(q0, a, p) ∈ ∆ and it exists (p, x, y) ∈ ∆} ∪

{(f, a, f + 1p − 1q) ∈ NQ0 × Σ×NQ0 |
f > 1q, (q, a, p) ∈ ∆ and it exists (p, x, y) ∈ ∆} ∪

{(f, a, f − 1q) ∈ NQ0 × Σ×NQ0 |
f > 1q, (q, a, p) ∈ ∆ and p ∈ F} ∪

{(f, a, f) ∈ NQ0 × Σ×NQ0 | (q0, a, p) ∈ ∆ and p ∈ F}.

Accepting of a word w ∈ Σ∗ is defined in the usual manner [Sakarovitch 2009].

Generally A� is a non-deterministic automaton with an infinite state set. In
the literature such automata are called multicounter automata [Björklund and Bo-
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18 · P. Ochsenschläger and R. Rieke

janczyk 2007] and it is known that they accept the iterated shuffle products [Je-
drzejowicz 1999]. For our purposes deterministic computations of these automata
are very important. To analyse these aspects more deeply we use our own notation
and proof of the main theorems.

Let for example P = {ab} (cf. Fig. 7). Then the states f : Q → N0 of the
automaton P� are described by the sets {(q, n) ∈ Q×N0|f(q) = n 6= 0}.

∅ a−→ {(II, 1)} a−→ {(II, 2)} b−→ {(II, 1)} b−→ ∅

is the only computation of aabb ∈ P� in P�; it is an accepting computation.

Example 3. Let P ′ = {ab, aab, b}.

I II III

IV V VI

a b

b a

b

Fig. 9. Automaton P′ for P ′

There are three accepting computations of aabb ∈ P ′� in P′�:

∅ a−→ {(II, 1)} a−→ {(II, 2)} b−→ {(II, 1)} b−→ ∅

∅ a−→ {(II, 1)} a−→ {(V, 1)} b−→ ∅ b−→ ∅

∅ a−→ {(II, 1)} a−→ {(V, 1)} b−→ {(V, 1)} b−→ ∅

and four not accepting computations, e.g.

∅ a−→ {(II, 1)} a−→ {(V, 1)} b−→ {(V, 1)} b−→ {(V, 1)}.

In [Ochsenschläger and Rieke 2010] it is shown that A� accepts P�.
Let P ⊂ Σ+ be defined by the automaton P in Fig. 6 and let L ⊂ Σ∗ be defined

by the automaton L in Fig. 5(a). L ∩ P� is accepted by the following product
automaton [Sakarovitch 2009] of L and P� (see Fig. 10), where the states f : QP →
N0 of the automaton P� are described by the sets {(q, n) ∈ QP×N0 | f(q) = n 6= 0}
and QP = {I, II, III, IV,V,VI,VII}.

As this automaton is strongly connected and isomorphic to L (without considering
final states), L is based on phase P .

The states (7, {(VI, 1), (II, 1)}) and (8, {(VI, 1), (III, 1)}) show that L is “in this
states involved in two phases”.

Note that this product automaton is finite and deterministic.
As deterministic computations in A� play an important role (see theorem 4) for

simplicity we assume that A is deterministic. I.e., the state transition relation ∆
can be described by a partial function δ : Q×Σ→ Q which is extended to a partial
function δ : Q × Σ∗ → Q as usual [Sakarovitch 2009]. Additionally we assume
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(1, ∅) (2, {(II, 1)})

(6, {(VI, 1)})

(3, {(III, 1)})

(5, {(V, 1)})

(4, {(IV, 1)})(7, {(VI, 1), (II, 1)})

(8, {(VI, 1), (III, 1)})

fx gx

gy

fy

fz

fx

gz
gx

gz

gz

Fig. 10. Product automaton of L and P�

that A does not contain superfluous states, i.e. δ(q0,pre(P )) = Q. So ∆� can be
represented by

∆� =∆̃ ∪ ∆̊ ∪ ∆̄ ∪ ˜̄∆ with

∆̃ ={(f, a, f + 1p) ∈ NQ0 × Σ×NQ0 | δ(q0, a) = p and it exists b ∈ Σ such that

δ(p, b) is defined},

∆̊ ={(f, a, f + 1p − 1q) ∈ NQ0 × Σ×NQ0 | f > 1q, δ(q, a) = p and it exists b ∈ Σ

such that δ(p, b) is defined},

∆̄ ={(f, a, f − 1q) ∈ NQ0 × Σ×NQ0 | f > 1q and δ(q, a) ∈ F} and

˜̄∆ ={(f, a, f) ∈ NQ0 × Σ×NQ0 | δ(q0, a) ∈ F}.

Let A ⊂ (∆�)∗ be the set of all paths in A� starting with the initial state 0 and
including the empty path ε. For w ∈ A, Z(w) denotes the final state of the path and

Z(ε) := 0. Formally the prefix closed language A and the function Z : A → N
Q
0

is defined inductively by ε ∈ A, Z(ε) := 0, and if w ∈ A with Z(w) = f and
(f, a, g) ∈ ∆� then w(f, a, g) ∈ A and Z(w(f, a, g)) := g. Let α′ : (∆�)∗ → Σ∗

be the homomorphism with α′((f, a, g)) = a for (f, a, g) ∈ ∆�, and let α := α′|A.

Hence w ∈ A is an accepting path of a word u ∈ Σ∗ iff Z(w) = 0 and α(w) = u.

Definition 12. A� is called deterministic on w ∈ (pre(P ))�, iff #(α−1(x)) = 1
for each x ∈ pre(w). In that case, we consider α−1(x) as an element of A instead
of a subset of A. (#(M) denotes the cardinality of a set M)

In [Ochsenschläger and Rieke 2010] the following theorem is proven, which will
be used in Sect. 5

Theorem 4. Let A� be deterministic on w ∈ (pre(P ))�, S a countable index set
and w′′ ∈ SRSpre(P )(w), then

Z[α−1(w)](q) = #({s ∈ S | δ(q0, τ
S
s (w′′)) = q and τSs (w′′) /∈ P ∪ {ε}})

for each q ∈ Q.
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Definition 13. A prefix-closed language L ⊂ Σ∗ is based deterministically on a
phase P ⊂ Σ+ w.r.t. P, if L is based on P and the deterministic automaton P

accepts P , so that P� is deterministic on each w ∈ L ⊂ (pre(P ))�.

If L is accepted by a deterministic automaton L, then L is based deterministically
on P w.r.t. P, iff L is based on P and the product automaton of L and P� is
deterministic.

So Fig. 10 shows that L is based deterministically on P w.r.t. P.

5. SUFFICIENT CONDITIONS FOR UNIFORMLY PARAMETERISED
BEHAVIOUR PROPERTIES

We now apply theorem 3 to prove approximate satisfaction of uniformly parame-
terised behaviour properties. By remark 2 it remains to show simplicity of ΠIK

I′K′ on
LIK . Therefore we use theorem 1, which demands for that purpose the following
assumptions to be fulfilled:

Assumption 1. There exists PIK ⊂ Σ∗IK such that

ΠIK
I′K′(x

−1(LIK)) = (ΠIK
I′K′(x))−1(ΠIK

I′K′(LIK))

for each x ∈ PIK .

and

Assumption 2.

LIK ⊂ pre(PIK ∩ LIK).

The following definition is the key to assumpion 1.

Definition 14 (set of closed behaviours). Let B,M ⊂ Σ∗. M is a set of closed
behaviours of B, iff x−1(B) = B for each x ∈ B ∩M .

In Fig. 10 the initial state (1, ∅) is the only final state of that strongly connected
product automaton, so P� is a set of closed behaviours of L.

The following theorem gives a set of closed behaviours of LIK .

Theorem 5.
Let P� be a set of closed behaviours of L and let πΦ(P�) resp. πΓ(P�) be a set
of closed behaviours of SF resp. SG, then

⋂
(i,k)∈I×K

(πIKik )−1(P�) is a set of closed

behaviours of LIK .

To prove theorem 5 the following properties of left quotients are needed:

Lemma 4. Let h : Σ∗ → Σ′∗, A′ ⊂ Σ′∗, Ai ⊂ Σ∗ for i ∈ I and x ∈ Σ∗ then

x−1(h−1(A′)) = h−1((h(x))−1(A′)) and (22a)

x−1(
⋂
i∈I

Ai) =
⋂
i∈I

(x−1(Ai)). (22b)
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Proof.

(22a) y ∈ x−1(h−1(A′))⇔ xy ∈ h−1(A′)

⇔ h(x)h(y) ∈ A′

⇔ h(y) ∈ (h(x))−1(A′)

⇔ y ∈ h−1((h(x))−1(A′))

(22b) y ∈ x−1(
⋂
i∈I

Ai)⇔ xy ∈ (
⋂
i∈I

Ai)

⇔ xy ∈ Ai for each i ∈ I
⇔ y ∈ x−1(Ai) for each i ∈ I

⇔ y ∈
⋂
i∈I

(x−1(Ai))

Proof. Proof for theorem 5:
Let x ∈ LIK ∩

⋂
(i,k)∈I×K

(πIKik )−1(P�). Then by lemma 4

x−1(LIK) =x−1[
⋂

(i,k)∈I×K

(πIKik )−1(L) ∩
⋂
i∈I

(ϕIKi )−1(SF ) ∩
⋂
k∈K

(γIKk )−1(SG)]

=
⋂

(i,k)∈I×K

(πIKik )−1[(πIKik (x))−1(L)] ∩
⋂
i∈I

(ϕIKi )−1[(ϕIKi (x))−1(SF )]

∩
⋂
k∈K

(γIKk )−1[(γIKk (x))−1(SG)].

So x−1(LIK) = LIK if for each (i, k) ∈ I ×K

(πIKik (x))−1(L) = L, (23)

(ϕIKi (x))−1(SF ) = SF , and, (24)

(γIKk (x))−1(SG) = SG . (25)

By assumption

πIKik (x) ∈ L ∩ P� for (i, k) ∈ I ×K (26)

and therefore (πIKik (x))−1(L) = L (23) because P� is a set of closed behaviours of
L.
Also by assumption

ϕIKr (x) ∈ SF ∩ ϕIKr [
⋂

(i,k)∈I×K

(πIKik )−1(P�)] (27)

for r ∈ I, and

γIKs (x) ∈ SG ∩ γIKs [
⋂

(i,k)∈I×K

(πIKik )−1(P�)] (28)

for s ∈ K.
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To derive equations (24) and (25) from (27) and (28) it is sufficient to prove

ϕIKr [
⋂

(i,k)∈I×K

(πIKik )−1(P�)] ⊂ πΦ(P�) (29)

for r ∈ I, and

γIKs [
⋂

(i,k)∈I×K

(πIKik )−1(P�)] ⊂ πΓ(P�) (30)

for s ∈ K, because πΦ(P�) resp. πΓ(P�) is a set of closed behaviours of SF resp.
SG .

The proof of (30) is analogue to (29), so it is sufficient to prove (29).
By definition ϕIKr = πΦ ◦Θ{r}×K ◦ΠIK

{r}K for r ∈ I if Σrk is identified with Σ(r,k).
Therefore

ϕIKr [
⋂

(i,k)∈I×K

(πIKik )−1(P�)] = πΦ[Θ{r}×K [ΠIK
{r}K(Y )]] (31)

with

Y =
⋂

(i,k)∈I×K

(πIKik )−1(P�) ⊂
⋂
k∈K

(πIKrk )−1(P�).

By definition πIKrk = τ
{r}×K
(r,k) ◦ ΠIK

{r}K for r ∈ I and k ∈ K, if Σrk is identified

with Σ(r,k). Therefore⋂
k∈K

(πIKrk )−1(P�) = (ΠIK
{r}K)−1[

⋂
k∈K

(τ
{r}×K
(r,k) )−1(P�)],

which implies ΠIK
{r}K(Y ) ⊂

⋂
k∈K

(τ
{r}×K
(r,k) )−1(P�).

Now by (31) we have

ϕIKr [
⋂

(i,k)∈I×K

(πIKik )−1(P�)] ⊂ πΦ[Θ{r}×K [
⋂
k∈K

(τ
{r}×K
(r,k) )−1(P�)]]. (32)

By definition of P�, lemma 1 and lemma 2 we have

Θ{r}×K [
⋂
k∈K

(τ
{r}×K
(r,k) )−1(P�)] = Θ{r}×K [

⋂
k∈K

(τ
{r}×K
(r,k) )−1(ΘN[

⋂
t∈N

(τNt )−1(P ∪ {ε})])]

= Θ{r}×K×N[
⋂

(k,t)∈K×N

(τ
{r}×K×N
(k,t) )−1(P ∪ {ε})]

= P�.

Now (32) implies

ϕIKr [
⋂

(i,k)∈I×K

(πIKik )−1(P�)] ⊂ πΦ(P�),

which proves (29) and therefore completes the proof of theorem 5.

To check for example if πΦ(P�) is a set of closed behaviours of SF (see Fig. 11(b))
the following result is helpful:
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Theorem 6 (homomorphism theorem for P�).
Let µ : Σ∗ → Σ′∗ be an alphabetic homomorphism, then holds µ(P�) = (µ(P ))�.

Proof. Let µN : Σ∗N → Σ′∗N the homomorphism with

µN(at) := (µ(a))t

for at ∈ Σt and t ∈ N, where (ε)t = ε.
Let τ ′Nt : Σ′∗N → Σ′∗ and Θ′N : Σ′∗N → Σ′∗ be defined like τNt and ΘN.

For these homomorphisms holds µ ◦ΘN = Θ′N ◦ µN, and therewith

µ(P�) = Θ′N[µN(
⋂
t∈N

(τNt )−1(P ∪ {ε}))]. (33)

From this it follows that µ(P�) = (µ(P ))� if the following equation holds:

µN(
⋂
t∈N

(τNt )−1(P ∪ {ε})) =
⋂
t∈N

(τ ′Nt )−1(µ(P ) ∪ {ε}) (34)

Proof. Proof of equation (34):
For each t ∈ N holds τ ′Nt ◦ µN = µ ◦ τNt .
For x ∈

⋂
t∈N

(τNt )−1(P ∪ {ε}) and t ∈ N from this it follows:

τ ′Nt (µN(x)) = µ(τNt (x)) ∈ µ(P ∪ {ε}) = µ(P ) ∪ {ε},

and so

µN(
⋂
t∈N

(τNt )−1(P ∪ {ε})) ⊂
⋂
t∈N

(τ ′Nt )−1(µ(P ) ∪ {ε}).

For the proof of the other inclusion of equation(34) we now prove the following
proposition:
For each y ∈ Σ′∗N and (ut)t∈N with τ ′Nt (y) = µ(ut), ut ∈ Σ+ for t ∈ T (y) and ut = ε
for t ∈ N \ T (y) exists an x ∈ Σ∗N with y = µN(x) and τNt (x) = ut for each t ∈ N.
Thereby is T (y) := {t ∈ N | τ ′Nt (y) 6= ε}, hence T (y) is a finite set.

Proof by induction.
Induction base.
For y = ε holds T (y) = ∅, and x = ε satisfies the proposition.
Induction step.
Let y = y′a′s ∈ Σ′∗N with a′s ∈ Σ′s and τ ′Nt (y) = µ(ut) with ut ∈ Σ+ for t ∈ T (y) as
well as ut = ε for t ∈ N \ T (y).
Then holds s ∈ T (y), because τ ′Ns (y) = τ ′Ns (y′)a′s 6= ε.
Let now us = u′sv

′
s with v′s ∈ Σ+, a′s = τ ′Ns (a′s) = µ(v′s) 6= ε and u′s = ε when

τ ′Ns (y′) = ε.
For t ∈ N \ {s} let u′t := ut.
y′ ∈ Σ′∗N and (u′t)t∈N now satisfy the induction hypothesis. Therefore exists x′ ∈ Σ∗N
with y′ = µN(x′) and τNt (x′) = u′t for each t ∈ N.
Because of the injectivity of τNs on Σ∗s exists now exactly one ṽs ∈ Σ+

s with
τNs (ṽs) = v′s.
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According to the definition of µN now for ṽs holds:
µN(ṽs) = a′s, hence µN(x′ṽs) = µN(x′)µN(ṽs) = y′a′s = y.
Because τNt (x′ṽs) = τNt (x′) = u′t = ut for t ∈ N\{s} and τNs (x′ṽs) = τNs (x′)τNs (ṽs) =
u′sv
′
s = us is then x := x′ṽs a proper x ∈ Σ∗N for y = y′a′s ∈ Σ′∗N for the induction

step. Therewith the proof of the proposition is completed.

From the above proposition follows the inclusion⋂
t∈N

(τ ′Nt )−1(µ(P ) ∪ {ε}) ⊂ µN(
⋂
t∈N

(τNt )−1(P ∪ {ε})),

which completes the proof of equation (34).

This in turn completes the proof of the homomorphism theorem 6 for P�.

The proofs of (33) and (34) do not depend on the special index set N. (33) and
(34) hold for arbitrary index sets S (note that we assume index sets beeing not
empty), which imply a corollary for structural representations.
For x ∈ Σ∗ and u ∈ SRS

P∪{ε}(x) holds x = ΘS(u) and u ∈
⋂
t∈S

(τSt )−1(P ∪{ε}). Now

(33) and (34) imply Θ′S(µS(u)) = µ(ΘS(u)) = µ(x) and µS(u) ∈ µS(
⋂
t∈S

(τSt )−1(P ∪

{ε})) =
⋂
t∈S

(τ ′St )−1(µ(P ) ∪ {ε}). So we get µS(u) ∈ SRS
µ(P )∪{ε}(µ(x)) and

Corollary 1. µS(SRS
P∪{ε}(x)) ⊂ SRS

µ(P )∪{ε}(µ(x)).

The following theorem states that PIK :=
⋂

(i,k)∈I×K
(πIKik )−1(P�) fulfills assump-

tion 1. This PIK consists of all elements of Σ∗IK “in which all phases are completed”.

Theorem 7.
Let LIK be self-similar and let the assumptions of theorem 5 be fulfilled, then

ΠIK
I′K′(x

−1(LIK)) = (ΠIK
I′K′(x))−1(ΠIK

I′K′(LIK))

for each x ∈ LIK ∩
⋂

(i,k)∈I×K
(πIKik )−1(P�) and I ′ ×K ′ ⊂ I ×K.

For its proof we need the following

Lemma 5. For I ′ ⊂ I, K ′ ⊂ K, and L ⊂ Σ∗ with ε ∈ L, the following relationships
hold:

ΠIK
I′K′ [(π

IK
ik )−1(L)] = (πI

′K′

ik )−1(L) for (i, k) ∈ I ′ ×K ′, (35a)

ΠIK
I′K′ [(π

IK
ik )−1(L)] = Σ∗I′K′ for (i, k) ∈ (I ×K) \ (I ′ ×K ′). (35b)

Proof.

(35a) x ∈ Σ∗I′K′ and πI
′K′

ik (x) ∈ L, for x ∈ (πI
′K′

ik )−1(L). From this it follows

that x ∈ Σ∗IK , πIKik (x) = πI
′K′

ik (x) ∈ L and x = ΠIK
I′K′(x), which implies

x ∈ ΠIK
I′K′ [(π

IK
ik )−1(L)]. Hence (πI

′K′

ik )−1(L) ⊂ ΠIK
I′K′ [(π

IK
ik )−1(L)]. For x ∈

ΠIK
I′K′ [(π

IK
ik )−1(L)] exists y ∈ Σ∗IK such that πIKik (y) ∈ L and x = ΠIK

I′K′(y).

Since (i, k) ∈ I ′ ×K ′ it follows that πIKik (y) = πI
′K′

ik (ΠIK
I′K′(y)) = πI

′K′

ik (x) ∈ L
which proves the inclusion ΠIK

I′K′ [(π
IK
ik )−1(L)] ⊂ (πI

′K′

ik )−1(L).
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(35b) For x ∈ Σ∗I′K′ and (i, k) ∈ (I ×K) \ (I ′ ×K ′) holds
x ∈ Σ∗IK , πIKik (x) = ε ∈ L and x = ΠIK

I′K′(x), and so x ∈ ΠIK
I′K′ [(π

IK
ik )−1(L)].

Hence Σ∗I′K′ ⊂ ΠIK
I′K′ [(π

IK
ik )−1(L)]. The reverse inclusion holds because of

ΠIK
I′K′ : Σ∗IK → Σ∗I′K′ .

Proof. By self-similarity of LIK and theorem 5 holds

ΠIK
I′K′(x

−1(LIK)) = LI′K′ . (36)

By (35a) and (35b) we have

ΠIK
I′K′(x) ∈ ΠIK

I′K′ [LIK ∩
⋂

(i,k)∈I×K

(πIKik )−1(P�)]

⊂ ΠIK
I′K′(LIK) ∩

⋂
(i,k)∈I′×K′

ΠIK
I′K′((π

IK
ik )−1(P�))

∩
⋂

(i,k)∈(I×K)\(I′×K′)

ΠIK
I′K′((π

IK
ik )−1(P�))

= LI′K′ ∩
⋂

(i,k)∈I′×K′
(πI

′K′

ik )−1(P�) ∩ Σ∗I′K′

= LI′K′ ∩
⋂

(i,k)∈I′×K′
(πI

′K′

ik )−1(P�).

Now self-similarity of LIK and theorem 5 imply

(ΠIK
I′K′(x))−1(ΠIK

I′K′(LIK)) = (ΠIK
I′K′(x))−1(LI′K′) = LI′K′ .

Together with (36) this proves theorem 7.

We now formulate conditions to fulfill assumption 2.

Condition I. Following the ideas of [Ochsenschläger and Rieke 2010] we assume
that L ⊂ Σ∗ is deterministically based on a phase P ⊂ Σ+ w.r.t. a deterministic
automaton P accepting P such that P� is a set of closed behaviours of L.

By condition I for w ∈ LIK and w /∈
⋂

(i,k)∈I×K
(πIKik )−1(P�) there exists (r, s) ∈

I ×K with πIKrs (w) ∈ L ∩ pre(P�) and πIKrs (w) /∈ P�.
If QP is the set of states of P then by definition of P� for y ∈ pre(P�) ∩ L, P�

is deterministic on y and therefore α−1
P (y) consists of exactly one element.

DP(y) :=
∑
q∈QP

[ZP (α−1
P (y))](q) ∈ N0 (37)

is the number of “open phases in y” where ZP and αP denote the Z- and α-functions
of P�. Therefore it describes the “defect” of an y ∈ pre(P�)∩L relative to P�∩L.
The index P in (37) denotes that QP and the functions ZP and αP depend on the
automaton P resp. P�.

In particular y ∈ P� ∩ L iff y ∈ pre(P�) ∩ L and DP(y) = 0.
So we have
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Theorem 8.
Let condition I be fulfilled and for each w ∈ LIK \

⋂
(i,k)∈I×K

(πIKik )−1(P�) exists

(r, s) ∈ I ×K and v ∈ w−1(LIK)∩Σ+
rs with DP(πIKrs (wv)) < DP(πIKrs (w)) then for

each w ∈ LIK there exists u ∈ w−1(LIK) with wu ∈ LIK ∩
⋂

(i,k)∈I×K
(πIKik )−1(P�).

Proof. Iterated application of the hypothesis of theorem 8 eventually leads to
wv1 . . . vn ∈ LIK with D((πIKik (wv1 . . . vn)) = 0 for each (i, k) ∈ I × K. There-
with follows the conclusion of the theorem for u = v1 . . . vn.

Theorem 8 is the base to construct step by step for each w ∈ LIK a v ∈ LIK∩PIK
with w ∈ pre(v).

We now consider example 2. Let P ⊂ Σ+ be defined by the automaton P in
Fig. 6. As shown in Sect. 4 (Fig. 10) L is based deterministically on phase P w.r.t.
P and as mentioned after definition 14 P� is a set of closed behaviours of L. So
condition I is fulfilled in example 2.

The automaton PF in Fig. 11(a) is the minimal automaton of πΦ(P ) ⊂ Φ+.
By theorem 6 SF ∩ πΦ(P�) = SF ∩ (πΦ(P ))�. So SF ∩ πΦ(P�) is accepted by

the product automaton of SF and PF� which is depicted in Fig. 11(b).

I II III IV
fx fy fz

(a) Automaton PF

(1, ∅)

(2, {(II, 1)}) (3, {(III, 1)})

fx

fy

fz

(b) Product automaton of SF and PF�

Fig. 11. Automaton PF and product automaton of SF and PF�

By the same argument as for the product automaton of L and P� SF is based
deterministically on πΦ(P ) w.r.t. PF, and πΦ(P�) is a set of closed behaviours of
SF .

The automaton PG in Fig. 12(a) is the minimal automaton of πΓ(P ) ⊂ Γ+.
By theorem 6 SG ∩ πΓ(P�) = SG ∩ (πΓ(P ))�. So SG ∩ πΓ(P�) is accepted by

the product automaton of SG and PG� which is depicted in Fig. 12(b).
By the same argument as for the product automaton of L and P� SG is based

deterministically on πΓ(P ) w.r.t. PG, and πΓ(P�) is a set of closed behaviours of
SG .

So especially all assumptions of theorem 5 and 8 are fulfilled for this example,
because in the appendix self-similarity of LIK has been proven.

The automata of Fig. 6, Fig. 11(b) and Fig. 12(b) show that

– each phase is initiated by an F -action,

– each F -partner is “involved” in at most one phase, and

– each G-partner is “involved” in at most two phases.
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I II III IV
gx gy gz

(a) Automaton PG

(1, ∅)

(2, {(II, 1)}) (3, {(III, 1)})

(4, {(III, 1), (II, 1)})

gx

gy

gz

gxgz

(b) Product automaton of SG and PG�

Fig. 12. Automaton PG and product automaton of SG and PG�

To construct the completions of phases v of theorem 8 one may imagine that the
following strategy could work.
Completion strategy:

(1) For each G-partner “involved” in two phases “complete” one of this phases.

(2) For each G-partner “involved” in one phases “complete” this phase.

(3) “Complete” the phases, where only an F -partner is “involved” in.

To formalise such a strategy more generally and to make corresponding comple-
tions of phases possible, some preparations and additional conditions are needed.
These conditions, including condition I, we call success conditions for the comple-
tion strategy.

Condition II. To formalise the “number of phases a partner is involved in” we
now assume that

(i) SF ⊂ Φ∗ is deterministically based on πΦ(P ) ⊂ Φ+ w.r.t. the minimal au-
tomaton PF of πΦ(P ) ,

(ii) πΦ(P�) is a set of closed behaviours of SF ,

(iii) SG ⊂ Γ∗ is deterministically based on πΓ(P ) ⊂ Γ+ w.r.t. the minimal au-
tomaton PG of πΓ(P ) and

(iv) πΓ(P�) is a set of closed behaviours of SG.

Fig. 11(b) and Fig. 12(b) show that condition II is fulfilled in example 2.
For each w ∈ LIK , i ∈ I and k ∈ K holds ϕIKi (w) ∈ SF and γIKk (w) ∈ SG .
By condition II SF = SF ∩ pre((πΦ(P ))�) resp. SG = SG ∩ pre((πΓ(P ))�) and

PF� resp. PG� is deterministic on ϕIKi (w) resp. γIKk (w).
Now DPF(ϕIKi (w)) resp. DPG(γIKk (w)) formally defines the “number of phases

partner i resp. k is involved in”. DPF and DPG are defined analogously to DP:
For y ∈ SF ∩ pre((πΦ(P ))�)

DPF(y) :=
∑
q∈QPF

[ZPF (α−1
PF (y))](q)

and for y ∈ SG ∩ pre((πΓ(P ))�)

DPG(y) :=
∑
q∈QPG

[ZPG(α−1
PG(y))](q),
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where QPF resp. QPG is the state set of PF resp. PG and ZPF resp. ZPG and αPF

resp. αPG denote the Z- and α-function of PF� resp. PG�.
We now want to derive relations between DP(πIKik (w)) and DPF(ϕIKi (w)) resp.

DPG(γIKk (w)) for w ∈ LIK , i ∈ I and k ∈ K.
As in the proof of theorem 5 the following holds:

LIK ⊂
⋂

(i,k)∈I×K

(πIKik )−1(L) ⊂
⋂
k∈K

(πIKrk )−1(L)

for each r ∈ I.
On account of πIKrk = τ

{r}×K
(r,k) ◦ΠIK

{r}K we get

LIK ⊂ (ΠIK
{r}K)−1[

⋂
k∈K

(τ
{r}×K
(r,k) )−1(L)],

which implies

ΠIK
{r}K(w) ∈

⋂
k∈K

(τ
{r}×K
(r,k) )−1(L) (38)

for each w ∈ LIK and r ∈ I.
By ϕIKr = πΦ ◦Θ{r}×K ◦ΠIK

{r}K (38) implies

ϕIKr (w) ⊂ πΦ[Θ{r}×K [
⋂
k∈K

(τ
{r}×K
(r,k) )−1(L)]] (39)

for each w ∈ LIK .
Condition I implies

L = pre(L ∩ P�) ⊂ pre(P�) = (pre(P ))�.

Now by lemma 1 and 2

ΠIK
{r}K(w) ∈

⋂
k∈K

(τ
{r}×K
(r,k) )−1(L)

⊂
⋂
k∈K

(τ
{r}×K
(r,k) )−1[ΘN(

⋂
t∈N

(τNt )−1(pre(P )))]

= Θ
{r}×K×N
{r}×K [

⋂
(k,t)∈K×N

(τ
{r}×K×N
(r,k,t) )−1(pre(P ))] (40)

which implies

w′ := Θ{r}×K(ΠIK
{r}K(w)) ∈ (pre(P ))� (41)

on account of Θ{r}×K ◦Θ
{r}×K×N
{r}×K = Θ{r}×K×N.

So by (38)-(41) for each w ∈ LIK and r ∈ I there exists w′′ ∈ SR
{r}×K×N
pre(P ) (w′)

with

ϕIKr (w) = πΦ(w′) and ΠIK
{r}K(w) = Θ

{r}×K×N
{r}×K (w′′). (42)

Now by corollary 1

πΦ{r}×K×N(w′′) ∈ SR
{r}×K×N
πΦ(pre(P ))(ϕ

IK
r (w)) (43)
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where

πΦ{r}×K×N : Σ∗{r}×K×N → Φ∗{r}×K×N with πΦ{r}×K×N(as) := (πΦ(a))s

for as ∈ Σs, s ∈ {r} ×K ×N and (ε)s := ε.
By condition II PF� is deterministic on ϕIKr (w) for w ∈ LIK and r ∈ I. There-

fore theorem 4 applies to PF� with the structural representation of (43) and we
get

ZPF [α−1
PF (ϕIKr (w))](q) =#({(r, k, t) ∈ {r} ×K ×N |

δPF (qPF0, τ
′{r}×K×N
(r,k,t) (πΦ{r}×K×N(w′′))) = q

and τ
′{r}×K×N
(r,k,t) (πΦ{r}×K×N(w′′)) /∈ πΦ(P ) ∪ {ε}})

for each q ∈ QPF . (44)

Here QPF is the state set, qPF0 the initial state and δPF the state transition
function of PF. ZPF and αPF denote the corresponding Z- and α-functions of PF.

By the proof of theorem 6 and corollary 1 the homomorphisms

τ
′{r}×K×N
(r,k,t) : Φ∗{r}×K×N → Φ∗ are defined by

τ
′{r}×K×N
(r,k,t) (x) := τ

{r}×K×N
(r,k,t) (x) (45)

for each x ∈ Φ∗{r}×K×N ⊂ Σ∗{r}×K×N.

As mentioned in the proof of (34)

τ
′{r}×K×N
(r,k,t) ◦ πΦ{r}×K×N = πΦ ◦ τ{r}×K×N(r,k,t) ,

which implies

τ
′{r}×K×N
(r,k,t) (πΦ{r}×K×N(w′′)) = πΦ(τ

{r}×K×N
(r,k,t) (w′′)) (46)

for each k ∈ K and t ∈ N.
Now we apply lemma 3 to the structural representation w′′ of (42). Let k ∈ K,

M := pre(P ), S := {r} × K, T := N, y′ := w′′ and x := ΠIK
{r}K(w). By (42) all

assumptions of lemma 3 are fulfilled and hence

Π
{r}×K×N
{r}×{k}×N(w′′) ∈SR

{r}×{k}×N
pre(P ) (Θ{r}×{k}(Π

{r}×K
{r}×{k}(Π

IK
{r}×K(w))))

= SR
{r}×{k}×N
pre(P ) (πIKrk (w)) (47)

by identifying Σ{r}K with Σ{r}×K and Σ{r}×{k} with Σrk.
(44) and (46) imply

ZPF [α−1
PF (ϕIKr (w))](q) =#({(r, k, t) ∈ {r} ×K ×N |

δPF (qPF0, πΦ(τ
{r}×K×N
(r,k,t) (w′′))) = q

and πΦ(τ
{r}×K×N
(r,k,t) (w′′)) /∈ πΦ(P ) ∪ {ε}})

for each q ∈ QPF . (48)

By condition I P� is deterministic on πIKrk (w) for w ∈ LIK and (r, k) ∈ I ×K.
Therefore theorem 4 applies to P� with the structural representation of (47) and
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we get

ZP [α−1
P (πIKrk (w))](q) =#({(r, k, t) ∈ {r} × {k} ×N |

δP (qP0′ , τ
{r}×{k}×N
(r,k,t) (Π

{r}×K×N
{r}×{k}×N(w′′))) = q

and τ
{r}×{k}×N
(r,k,t) (Π

{r}×K×N
{r}×{k}×N(w′′)) /∈ P ∪ {ε}})

=#({(r, k, t) ∈ {r} × {k} ×N |

δP (qP0′ , τ
{r}×K×N
(r,k,t) (w′′)) = q

and τ
{r}×K×N
(r,k,t) (w′′) /∈ P ∪ {ε}})

for each q ∈ QP and k ∈ K (49)

because of

τ
{r}×{k}×N
(r,k,t) ◦Π

{r}×K×N
{r}×{k}×N = τ

{r}×K×N
(r,k,t)

for each (r, k, t) ∈ I ×K ×N.
In (49) QP is the state set, qP0 the initial state and δP the state transition

function of P.
By (47) τ

{r}×K×N
(r,k,t) (w′′) ∈ pre(P ) for each (r, k, t) ∈ I ×K ×N.

Now equations (48) and (49) imply relations between ZPF [α−1
PF (ϕIKr (w))] and

ZP [α−1
P (πIKrk (w))] which can be used to formulate conditions allowing completions

of phases to reduce DP(πIKrk (w)).
For that purpose let the relation RΦ ⊂ QP ×QPF be defined by

RΦ := {(δP (qP0, u)), δPF (qPF0, πΦ(u))) ∈ QP ×QPF | u ∈ pre(P )}.

For q ∈ QP and qF ∈ QPF we also use the notation

RΦ(q) := {x ∈ QPF | (q, x) ∈ RΦ} and R−1
Φ (qF ) := {y ∈ QP | (y, qF ) ∈ RΦ}.

If ZPF [α−1
PF (ϕIKr (w))](qF ) > 0 for some qF ∈ QPF then by (48) there ex-

ists kq ∈ K and tq ∈ N such that δPF (qPF0, πΦ(τ
{r}×K×N
(r,kq,tq) (w′′))) = qF and

πΦ(τ
{r}×K×N
(r,kq,tq) (w′′)) /∈ πΦ(P ) ∪ {ε}. This implies τ

{r}×K×N
(r,kq,tq) (w′′) /∈ P ∪ {ε} and

by (49) there exist q ∈ R−1
Φ (qF ) with

ZP [α−1
P (πIKrkq (w))](q) > 0. (50)

Concerning an implication in the other direction one have to note that u ∈ pre(P )
and u /∈ P ∪ {ε} does not imply πΦ(u) /∈ πΦ(P ) ∪ {ε}. For that reason let

EΦ := {δP (qP0, u) ∈ QP | u ∈ (pre(P ) \ {ε}) ∩ π−1
Φ ({ε})} and

PΦ := {δP (qP0, u) ∈ QP | u ∈ (pre(P ) \ P ) ∩ π−1
Φ (πΦ(P ))}.

If ZP [α−1
P (πIKrk (w))](p) > 0 for some p ∈ QP and k ∈ K then by (49) there exists

tp ∈ N such that δP (qP0, τ
{r}×K×N
(r,k,tp) (w′′)) = p and τ

{r}×K×N
(r,k,tp) (w′′) /∈ P ∪ {ε}.

Now if p ∈ EΦ ∪ PΦ by (48) there exists pF ∈ RΦ(p) with

ZPF [α−1
PF (ϕIKr (w))](pF ) > 0. (51)
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By the same argumentation and corresponding definitions of RΓ, EΓ and PΓ one
gets corresponding propositions for γIKs (w) with s ∈ K and w ∈ LIK :
If ZPG [α−1

PG(γIKs (w))](qG) > 0 for some qG ∈ QPG then there exists iq ∈ I and
p ∈ R−1

Γ (qG) with

ZP [α−1
P (πIKiqs (w))](q) > 0. (52)

If ZP [α−1
P (πIKis (w))](p) > 0 for some p ∈ QP \ (EΓ ∪ PΓ) and i ∈ I then there

exists pG ∈ RΓ(p) with

ZPG [α−1
PG(γIKs (w))](pG) > 0. (53)

For the following definition let FP resp. FPF resp. FPG be the set of final states
of the automaton P resp. PF resp. PG.

Definition 15. A state of qF ∈ QPF has the completion property iff
for each x ∈ pre(πΦ(P�)) ∩ SF with ZPF [α−1

PF (x)](qF ) > 0 and
each (y, q) ∈ (pre(P�) ∩ L)×R−1

Φ (qF ) with ZP [α−1
P (y)](q) > 0

it holds q /∈ EΓ and
if q ∈ PΓ then there exists y′ ∈ y−1(L) ∩ x−1(SF ) ∩ Φ+ with
δP (q, y′) ∈ FP and δPF (qF , y

′) ∈ FPF and
if q /∈ PΓ, then for each (z, qG) ∈ (pre(πΓ(P�)) ∩ SG)×RΓ(q)
with ZPG [α−1

PG(z)](qG) > 0 there exists
y′′ ∈ y−1(L) ∩ π−1

Φ (x−1(SF )) ∩ π−1
Γ (z−1(SG)) with

δP (q, y′′) ∈ FP , δPF (qF , πΦ(y′′)) ∈ FPF , δPG(qG, πΓ(y′′)) ∈ FPG and
πΦ(y′′) 6= ε 6= πΓ(y′′).

In a corresponding manner it is defined how a state qG ∈ QPG has the completion
property.

Now we are able to formulate condition III:

Condition III. For each u ∈ pre(πΦ(P�)) ∩ SF with
∑
p∈QPF

ZPF [α−1
PF (u)](p) > 1

there exits qF ∈ QPF with ZPF [α−1
PF (u)](qF ) > 0, which has the completion property

and for each v ∈ pre(πΓ(P�)) ∩ SG with
∑

p∈QPG

ZPG [α−1
PG(v)](p) > 1 there exits

qG ∈ QPG with ZPG [α−1
PG(v)](qG) > 0, which has the completion property.

To check the completion property for a state qF ∈ QPF first of all the sets RΦ,
EΓ and PΓ have to be determined. This can be done by constructing the product
automaton of P and PF resp, P and PG whose state set is RΦ resp. RΓ.

In the definition of the completion property there are quantifications over x ∈
pre(πΦ(P�)) ∩ SF , y ∈ pre(P�) ∩ L and z ∈ pre(πΓ(P�)) ∩ SG .

As x, y and z only appear in the terms ZPF [α−1
PF (x)], x−1(SF ), ZP [α−1

P (y)],
y−1(L), ZPG [α−1

PG(z)] and z−1(SG), which are the state components of the product
automaton of SF and PF�, resp. L and P�, resp. SG and PG� these quantification
can be checked by inspecting these product automata.

(Note that the left quotients of a formal language can be identified with the states
of its minimal automaton [Sakarovitch 2009])

By the same argument condition III can be checked by inspecting the product
automaton of SF and PF� as well as the product automaton of SG and PG�.

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



32 · P. Ochsenschläger and R. Rieke

We demonstrate this in our example 2 and prove condition III:
The second components of the states in Fig. 11(b) show that∑

p∈QPF

ZPF [α−1
PF (u)](p) ≤ 1 for each u ∈ pre(πΦ(P�)) ∩ SF .

So no qF ∈ QPF with the completion property has to be found.
The second components of the states in Fig. 12(b) show that∑

p∈QPG

ZPG [α−1
PG(v)](p) > 1 holds only for those v ∈ pre(πΓ(P�)) ∩ SG with

ZPG [α−1
PG(v)] = {(III, 1), (II, 1)}.

So for these v qG ∈ QPG with ZPG [α−1
PG(v)](qG) > 0, which has the completion

property, has to be found.
So qG ∈ {III, II} ⊂ QPG .
Now we show that III ∈ QPG has the completion property. For that purpose the

sets RΓ, EΦ and PΦ are needed.
The product automaton of P and PG accepting pre(P ) ∩ π−1

Γ (πΓ(pre(P ))) =
pre(P ) is given in Fig. 13.

(I, I) (II, I) (III, II) (IV, III)

(V, III)(VI, III)(VII, IV)

fx gx gy

fy

fzgz

Fig. 13. Product automaton of P and PG

So

RΓ = {(I, I), (II, I), (III, II), (IV, III), (V, III), (VI, III), (VII, IV)}
⊂ QP ×QPG . (54)

To determine EΦ and PΦ we first compute the product automaton of P and PF

accepting pre(P ) ∩ π−1
Φ (πΦ(pre(P ))) = pre(P ). Fig. 14 shows this automaton.

(I, I) (II, II) (III, II) (IV, II)

(V, III)(VI, IV)(VII, IV)

fx gx gy

fy

fzgz

Fig. 14. Product automaton of P and PF

Fig. 14 shows

EΦ = ∅ and PΦ = {VI}. (55)

By definition 15 the state qG = III ∈ QPG has the completion property iff
for each z ∈ pre(πΓ(P�)) ∩ SG with ZPG [α−1

PG(z)](III) > 0 and
each (y, q) ∈ (pre(P�) ∩ L)×R−1

Γ (III) with ZP [α−1
P (y)](q) > 0
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it holds q /∈ EΦ and
if q ∈ PΦ then there exists y′ ∈ y−1(L) ∩ z−1(SG) ∩ Γ+ with
δP (q, y′) ∈ FP and δPG(III, y′) ∈ FPG , and
if q /∈ PΦ, then for each (x, qF ) ∈ (pre(πΦ(P�)) ∩ SF )×RΦ(q)
with ZPF [α−1

PF (x)](qF ) > 0 there exists
y′′ ∈ y−1(L)∩π−1

Φ (x−1(SF ))∩π−1
Γ (z−1(SG)) with δP (q, y′′) ∈ FP , δPF (qF , πΦ(y′′)) ∈

FPF ,
δPG(III, πΓ(y′′)) ∈ FPG and
πΦ(y′′) 6= ε 6= πΓ(y′′).

For III ∈ QPG (54) implies

R−1
Γ = {IV,V,VI} ⊂ QP . (56)

Now z ∈ pre(πΓ(P�))∩SG and ZPG [α−1
PG(z)](III) > 0 implies by the automaton

in Fig. 12(b)

δSG(1, z) ∈ {3, 4}, (57)

where δSG is the state transition function of the automaton SG in Fig. 5(c).
(y, q) ∈ (pre(P�)∩L)×R−1

Γ (III) and ZP [α−1
P (y)](q) > 0 implies by (56) and by

the automaton in Fig. 10

q = IV ∈ QP and δL(1, y) = 4 or (58a)

q = V ∈ QP and δL(1, y) = 5 or (58b)

q = VI ∈ QP and δL(1, y) ∈ {6, 7, 8}, (58c)

where δL is the state transition function of the automaton L in Fig. 5(a). In each
of these cases holds q ∈ EΦ on account of (55).

Also by (55) q ∈ PΦ for case (58c). In that case δP (q, gz) = δP (VI, gz) ∈ FP and
δPG(III, gz) ∈ FPG .

By (57) the automaton SG implies gz ∈ z−1(SG), and by (58c) the automaton
L implies gz ∈ y−1(L). So y′ := gz ∈ y−1(L) ∩ z−1(SG) ∩ Γ+, which implies the
completion property of III ∈ QPG in case (58c).

If q ∈ {IV,V} then by (55) q /∈ PΦ. So we need the relation RΦ ⊂ QP ×QPF .
By the product automaton of Fig. 14

RΦ = {(I, I), (II, II), (III, II), (IV, II), (V, III), (VI, IV), (VII, IV)}. (59)

Now in case (58a) (x, qF ) ∈ (pre(πΦ(P�))∩SF )×RΦ(q) and ZPF [α−1
PF (x)](qF ) > 0

implies by (59) and by the automaton in Fig. 11(b)

qF = II ∈ QPF and δSF (1, x) = 2, (60)

where δSF is the state transition function of the automaton SF in Fig.5(b).
By (58a) the automaton P implies δP (q, fyfzgz) = δP (IV, fyfzgz) ∈ FP , and the

automaton L implies fyfzgz ∈ y−1(L).
By (60) the automaton PF implies δPF (qF , fyfz) = δPF (II, fyfz) ∈ FPF , and the

automaton SF implies fyfz ∈ x−1(SF ).
The automaton PG implies δPG(III, gz) ∈ FPG , and by (57) the automaton SG

implies gz ∈ z−1(SG).
So y′′ := fyfzgz fulfills the conditions of the completion property of III ∈ QPG in

case (58a), because of πΦ(y′′) 6= ε 6= πΓ(y′′).
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By a corresponding argument in case (58b)

qF = III ∈ QPF and δSF (1, x) = 3. (61)

This implies that y′′ := fzgz fulfills the necessary conditions to complete the proof
of the completion property of III ∈ QPG .

So our example 2 fulfills condition III.
Using (50) - (53) we are able to prove

Theorem 9. Let condition I - condition III be fulfilled and w ∈ LIK .

(9a) If DPF(ϕIKr (w)) > 1 for r ∈ I
then there exists s ∈ K and w′ ∈ w−1(LIK) ∩ Σ+

rs with

DP(πIKrs (ww′)) < DP(πIKrs (w)),

DPF(ϕIKr (ww′)) < DPF(ϕIKr (w)) and

DPG(γIKs (ww′)) ≤ DPG(γIKs (w)).

(9b) If DPG(γIKs (w)) > 1 for s ∈ K
then there exists r ∈ I and w′ ∈ w−1(LIK) ∩ Σ+

rs with

DP(πIKrs (ww′)) < DP(πIKrs (w)),

DPG(γIKs (ww′)) < DPG(γIKs (w)) and

DPF(ϕIKr (ww′)) ≤ DPF(ϕIKr (w)).

Proof. The proof of (9b) is analogue to (9a), so it is sufficient to prove (9a).
w ∈ LIK implies ϕIKr (w) ∈ SF and hence by condition II

ϕIKr (w) ∈ SF ∩ pre((πΦ(P ))�) and PF is deterministic on ϕIKr (w).
So by definition DPF(ϕIKr (w)) =

∑
q∈QPF

[ZPF (α−1
PF (ϕIKr (w)))](q).

Now on account of condition III and DPF(ϕIKr (w)) > 1 there exists qF ∈ QPF

with

ZPF [α−1
PF (ϕIKr (w))](qF ) > 0, (62)

which has the completion property.
By (50) there exist kq ∈ K and q ∈ R−1

Φ (qF ) with

ZP [α−1
P (πIKrkq (w))](q) > 0. (63)

Now condition I, condition II and the completion property of qF imply (with
y = πIKrkq (w) and x = ϕIKr (w)) q /∈ EΓ and for each of the two cases q ∈ PΓ or

q /∈ PΓ the existence of certain continuations of πIKrkq (w) in L.
Case 1: q ∈ PΓ

By the completion property of qF there exits

y′ ∈ (πIKrkq (w))−1(L) ∩ (ϕIKr (w))−1(SF ) ∩ Φ+ (64)

with δP (q, y′) ∈ FP and δPF (qF , y
′) ∈ FPF . We now show that s := kq ∈ K and

w′ := (π
{r}{kq}
rkq

)−1(y′) ∈ Φ+
rkq

fulfill (9a). (Note that π
{r}{kq}
rkq

: Σ∗rkq → Σ∗ is an

isomorphism.)

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



Phase Based Cooperations · 35

For this w′ it holds πIKrkq (w′) = y′, ϕIKr (w′) = y′, πIKik (w′) = ε for (i, k) ∈
(I ×K) \ {(r, kq)}, ϕIKi (w′) = ε for i ∈ I \ {r} and γIKk (w′) = ε for k ∈ K.

Together with (64) this implies

w′ ∈ w−1(LIK) ∩ Σ+
rs. (65)

Let y′ = a1 . . . an with n ≥ 1 and ai ∈ Φ for i ∈ {1, . . . , n}. On account of
δP (q, y′) ∈ FP for i ∈ {1, . . . , n+ 1} there exists qi ∈ QP with q = q1, δP (qi, ai) =
qi+1 for i ∈ {1, . . . , n} and qn+1 ∈ FP .

According to the definition of P� let

∆�P = ∆̃P ∪ ∆̊P ∪ ∆̄P ∪ ˜̄∆P ⊂ NQP

0 × Σ×NQP

0

be the state transition relation of P� and AP ⊂ (∆�P )∗ the set of all possible paths
in P� starting with the initial state 0 and including the empty path ε.

Let f1 = ZP [α−1
P (πIKrkq (w))] ∈ NQP

0 .

By (63) f1 ≥ 1q = 1q1 .
For i ∈ {1, . . . , n− 1} let fi+1 := fi − 1qi + 1qi+1 and let fn+1 := fn − 1qn .
This implies fi ≥ 1qi and∑

p∈QP

fi(p) =
∑
p∈QP

f1(p) for i ∈ {1, . . . , n} and

∑
p∈QP

fn+1(p) =
∑
p∈QP

f1(p)− 1. (66)

By definition of ∆�P

(fi, ai, fi+1) ∈ ∆̊P and (fn, an, fn+1) ∈ ∆̄P .

Hence

α−1
P (πIKrkq (w))(f1, a1, f2) . . . (fn, an, fn+1) ∈ AP .

This implies

α−1
P (πIKrkq (ww′)) = α−1

P (πIKrkq (w))(f1, a1, f2) . . . (fn, an, fn+1)

because by (65) and condition I P� is deterministic on πIKrkq (ww′).

So by (66) we get
DP(πIKrs (ww′)) = DP(πIKrkq (ww′)) =

∑
p∈QP

ZP [α−1
P (πIKrkq (ww′))](p) =

∑
p∈QP

fn+1(p) =∑
p∈QP

f1(p)− 1 =
∑

p∈QP

ZP [α−1
P (πIKrkq (w))](p)− 1 = DP(πIKrs (w))− 1.

The same argumentation concerning PF� shows

DPF(ϕIKr (ww′)) = DPF(ϕIKr (w))− 1.

Because of w′ ∈ Φ+
rs it holds γIKs (w′) = ε and therefore

DPG(γIKs (ww′)) = DPG(γIKs (w)),

which completes the proof of (9a) for case (1).

Case 2: q /∈ PΓ

Now by (63) and (53) there exists qG ∈ RΓ(p) with ZPG [α−1
PG(γIKkq (w))](qG) > 0.
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So condition II and the completion property of qF imply (with z = γIKkq (w)) the
existence of

y′′ ∈ (πIKrkq (w))−1(L) ∩ π−1
Φ ((ϕIKr (w))−1(SF ))

∩ π−1
Γ ((γIKkq (w))−1(SG)) (67)

with δP (q, y′′) ∈ FP and δPF (qF , πΦ(y′′)) ∈ FPF , δPG(qG, πΓ(y′′)) ∈ FPG and
πΦ(y′′) 6= ε 6= πΓ(y′′).

We now show that s := kq ∈ K and w′ := (π
{r}{kq}
rkq

)−1(y′′) ∈ Σ+
rkq

fulfill (9a). For

this w′ it holds πIKrkq (w′) = y′′, ϕIKr (w′) = πΦ(y′′), γIKkq (w′) = πΓ(y′′), πIKik (w′) = ε

for (i, k) ∈ (I × K) \ {(r, kq)}, ϕIKi (w′) = ε for i ∈ I \ {r} and γIKk (w′) = ε for
k ∈ K \ {kq}.

Together with (67) this implies

w′ ∈ w−1(LIK) ∩ Σ+
rs. (68)

Now the same argumentation as in case 1 shows

DP(πIKrs (ww′)) = DP(πIKrs (w))− 1,

DPF(ϕIKr (ww′)) = DPF(ϕIKr (w))− 1 and

DPG(γIKs (ww′)) = DPG(γIKs (w))− 1,

which completes the proof of theorem 9.

Iteration of theorem 9 proves

Corollary 2. Let condition I - condition III be fulfilled, then for each w ∈ LIK
there exists ŵ ∈ w−1(LIK) such that

DPF(ϕIKi (wŵ)) ≤ 1,DPG(γIKk (wŵ)) ≤ 1 and DP(πIKik (wŵ)) ≤ DP(πIKik (w))

for each i ∈ I and k ∈ K.

By (49)
∑

q∈QP \(EΦ∪PΦ)

ZP [α−1
P (πIKrk (w))](q) > 1 implies the existence of t, t′ ∈ N

with t 6= t′, δP (qP0, τ
{r}×K×N
(r,k,t) (w′′)) ∈ QP \ (EΦ ∪ PΦ), τ

{r}×K×N
(r,k,t) (w′′) /∈ P ∪ {ε},

δP (qP0, τ
{r}×K×N
(r,k,t′) (w′′)) ∈ QP \ (EΦ ∪ PΦ) and τ

{r}×K×N
(r,k,t′) (w′′) /∈ P ∪ {ε}.

By the definition of EΦ and PΦ this implies

δPF (qPF0, πΦ(τ
{r}×K×N
(r,k,t) (w′′))) ∈ QPF , πΦ(τ

{r}×K×N
(r,k,t) (w′′)) /∈ πΦ(P ) ∪ {ε},

δPF (qPF0, πΦ(τ
{r}×K×N
(r,k,t′) (w′′))) ∈ QPF and πΦ(τ

{r}×K×N
(r,k,t′) (w′′)) /∈ πΦ(P ) ∪ {ε}.

Hence by (48)

DPF(ϕIKr (w)) =
∑

qF∈QPF

ZPF [α−1
PF (ϕIKr (w))](qF ) > 1.

By analogous argumentation∑
q∈QP \(EΓ∪PΓ)

ZP [α−1
P (πIKrk (w))](q) > 1

implies DPG(γIKk (w)) > 1 for (r, k) ∈ I ×K.
So corollary 2 implies
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Corollary 3. ∑
q∈QP \(EΦ∪PΦ)

ZP [α−1
P (πIKik (wŵ))](q) ≤ 1 and

∑
q∈QP \(EΓ∪PΓ)

ZP [α−1
P (πIKik (wŵ))](q) ≤ 1

for (i, k) ∈ I ×K.

Condition IV. For each z ∈ pre(πΓ(P�)) ∩ SG and qG ∈ QPG with
ZPG [α−1

PG(z)] = 1qG and each (y, q) ∈ (pre(P�) ∩ L)×R−1
Γ (qG) with

ZP [α−1
P (y)](q) > 0,

∑
q′∈QP \(EΦ∪PΦ)

ZP [α−1
P (y)](q′) ≤ 1 and∑

q′∈QP \(EΓ∪PΓ)

ZP [α−1
P (y)](q′) ≤ 1 it holds

q /∈ EΦ and
if q ∈ PΦ then there exists y′ ∈ y−1(L) ∩ z−1(SG) ∩ Γ+ with
δP (q, y′) ∈ FP and δPG(qG, y

′) ∈ FPG , and
if q /∈ PΦ then for each (x, qF ) ∈ (pre(πΦ(P�)) ∩ SF )×RΦ(q)

with ZPF [α−1
PF (x)] = 1qF there exists

y′′ ∈ y−1(L) ∩ π−1
Φ (x−1(SF )) ∩ π−1

Γ (z−1(SG)) with
δP (q, y′′) ∈ FP , δPF (qF , πΦ(y′′)) ∈ FPF , δPG(qG, πΓ(y′′)) ∈ FPG and
πΦ(y′′) 6= ε 6= πΓ(y′′).

We now show that example 2 fulfills condition IV.
The states of the automaton in Fig. 12(b) show that ZPG [α−1

PG(z)] = 1qG holds
only for those z ∈ pre(πΓ(P�)) ∩ SG and qG ∈ QPG with

qG = II and δSG(1, z) = 2 or (69a)

qG = III and δSG(1, z) = 3. (69b)

Now (54) implies

R−1
Γ (II) = {III} ⊂ QP and (70a)

R−1
Γ (III) = {IV,V,VI} ⊂ QP . (70b)

Fig. 13 shows

EΓ = {II} and PΓ = ∅ (71)

By (70a), Fig. 10, (55) and (71)
(y, q) ∈ (pre(P�) ∩ L)×R−1

Γ (II) with ZP [α−1
P (y)](q) > 0,∑

q′∈QP \(EΦ∪PΦ)

ZP [α−1
P (y)](q′) ≤ 1 and

∑
q′∈QP \(EΓ∪PΓ)

ZP [α−1
P (y)](q′) ≤ 1 implies

q = III ∈ Qp and δL(1, y) = 3. (72)

By (70b), Fig. 10, (55) and (71)
(y, q) ∈ (pre(P�) ∩ L)×R−1

Γ (III) with ZP [α−1
P (y)](q) > 0,
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q′∈QP \(EΦ∪PΦ)

ZP [α−1
P (y)](q′) ≤ 1 and

∑
q′∈QP \(EΓ∪PΓ)

ZP [α−1
P (y)](q′) ≤ 1 implies

q = IV ∈ Qp and δL(1, y) = 4 or (73a)

q = V ∈ Qp and δL(1, y) = 5 or (73b)

q = VI ∈ Qp and δL(1, y) ∈ {6, 7}. (73c)

On account of (55) in each of these 4 cases holds q /∈ EΦ.
Also by (55) q ∈ PΦ iff q = VI ∈ QP , which is case (73c). Hence qG = III ∈ QPG ,

δSG(1, z) = 3 and δL(1, y) ∈ {6, 7}. In that case the automata P (Fig. 6), PG
(Fig. 12(a)), SG (Fig. 5(c)) and L (Fig. 5(a)) show δP (q, gz) = δP (VI, gz) ∈ FP ,
δPG(qG, gz) = δPG(III, gz) ∈ FPG , gz ∈ z−1(SG) and gz ∈ y−1(L).

So y′ := gz ∈ y−1(L) ∩ Γ+ ∩ z−1(SG) fulfills condition IV in case (73c).
In each of the other 3 cases (72), (73a) and (73b) holds q /∈ PΦ.
In case (72) holds qG = II ∈ QPG , δSG(1, z) = 2, q = III ∈ QP , δL(1, y) = 3 and

by (59) RΦ(III) = {II} ⊂ QPF .
Hence by the automaton in Fig.11(b)

(x, qF ) ∈ (pre(πΦ(P�)) ∩ SF )×RΦ(III)
with ZPF [α−1

PF (x)] = 1qF implies qF = II ∈ QPF and δSF (1, x) = 2.
In that case the automata P (Fig. 6), PF (Fig. 11(a)), PG (Fig. 12(a)), SF

(Fig. 5(b)), SG (Fig. 5(c)) and L (Fig. 5(a)) show

δP (q, gyfyfzgz) = δP (III, gyfyfzgz) ∈ FP ,
δPF (qF , πΦ(gyfyfzgz)) = δPF (II, fyfz) ∈ FPF ,

δPG(qG, πΓ(gyfyfzgz)) = δPG(II, gygz) ∈ FPG ,

gyfyfzgz ∈ y−1(L), πΦ(gyfyfzgz) ∈ x−1(SF ) and πΓ(gyfyfzgz ∈ z−1(SG).
So y′′ := gyfyfzgz fulfills condition IV in case (72).

In case (73a) holds qG = III ∈ QPG , δSG(1, z) = 3, q = IV ∈ Qp, δL(1, y) = 4
and by (59) RΦ(IV) = {II} ⊂ QPF .

In case (73b) holds qG = III ∈ QPG , δSG(1, z) = 3, q = V ∈ Qp, δL(1, y) = 5 and
by (59) RΦ(V) = {III} ⊂ QPF .

Now by the same argumentation as in case (72) y′′ := fyfzgz fulfills condition IV
in case (73a) and y′′ := fzgz fulfills condition IV in case (73b). So example 2 fulfills
condition IV.

Theorem 10. Let condition I - IV be fulfilled and w ∈ LIK with DPF(ϕIKi (w)) ≤ 1
and DPG(γIKk (w)) ≤ 1 for (i, k) ∈ I ×K.
If DPG(γIKs (w)) = 1 for s ∈ K then there exists r ∈ I and w′ ∈ w−1(LIK) ∩ Σ+

rs

with

DP(πIKrs (ww′)) < DP(πIKrs (w)),

DPG(γIKs (ww′)) = 0 and

DPF(ϕIKr (ww′)) ≤ DPF(ϕIKr (w)).
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Proof. By corollary 3 ∑
q′∈QP \(EΦ∪PΦ)

ZP [α−1
P (πIKik (w))](q′) ≤ 1 and

∑
q′∈QP \(EΓ∪PΓ)

ZP [α−1
P (πIKik (w))](q′) ≤ 1 (74)

for each (i, k) ∈ I ×K.
DPG(γIKs (w)) = 1 for s ∈ K imply the existence of qG ∈ QPG with

ZPG [α−1
PG(γIKs (w))](q′) = 1qG (75)

Now by (52) there exists iq ∈ I and q ∈ R−1
Γ (qG) with

ZP [α−1
P (πIKiqs (w))](q) > 0. (76)

(74), (75), (76) and condition IV imply (with z = γIKs (w) and y = πIKiqs (w))

q /∈ EΦ and for each of the two cases q ∈ PΦ or q /∈ PΦ the existence of certain
continuations of πIKiqs (w) in L.

Case(1): q ∈ PΦ

By condition IV there exists

y′ ∈ (πIKiqs (w))−1(L) ∩ (γIKs (w))−1(SG) ∩ Γ+ (77)

with δP (q, y′) ∈ FP and δPG(qG, y
′) ∈ FPG .

We now show that r := iq ∈ I and w′ := (π
{r}{s}
rs )−1(y′) ∈ Γ+

rs ⊂ Σ+
rs fulfill the

statement of theorem 10.
For this w′ it holds πIKrs (w′) = y′, γIKs (w′) = y′, πIKik (w′) = ε for (i, k) ∈

(I ×K) \ {(r, s)}, γIKk (w′) = ε for k ∈ K \ {s} and ϕIKi (w′) = ε for i ∈ I.
Together with (77) this implies

w′ ∈ w−1(LIK) ∩ Σ+
rs (78)

Let y′ = a1 . . . an with n ≥ 1 and ai ∈ Γ for i ∈ {1, . . . , n}. On account of
δ(q, y′) ∈ FP for i ∈ {1, . . . , n+1} there exists qi ∈ QP with q = q1, δP (qi, ai) = qi+1

for i ∈ {1, . . . , n} and qn+1 ∈ FP .
By the same argumentation as in case (1) of the proof of theorem 9 we get

DP(πIKrs (ww′)) = DP(πIKrs (w))− 1.

The same argumentation concerning PG� shows DPG(γIKs (ww′)) = 0.
Because of w′ ∈ Γ+

rs it holds ϕIKr (w′) = ε and therefore

DPF(ϕIKr (ww′)) = DPF(ϕIKr (w)),

which completes the proof of theorem 10 for case (1).

Case(2): q /∈ PΦ and therefore q /∈ EΦ ∪ PΦ.
Now on account of (76) and (51) there exists qF ∈ RΦ(q) with
ZPF [α−1

PF (ϕIKiq (w))](qF ) > 0, which implies ZPF [α−1
PF (ϕIKiq (w))] = 1qF by the as-

sumptions of theorem 10.

Fraunhofer SIT Technical Report, SIT-TR-2010/2, 12 2010.



40 · P. Ochsenschläger and R. Rieke

So (with x = ϕIKiq (w)) condition IV implies the existence of

y′′ ∈ (πIKiqs (w))−1(L) ∩ π−1
Φ ((ϕIKiq (w))−1(SF ))

∩ π−1
Γ ((γIKs (w))−1(SG)) (79)

with δP (q, y′′) ∈ FP , δPF (qF , πΦ(y′′)) ∈ FPF , δPG(qG, πΓ(y′′)) ∈ FPG and
πΦ(y′′) 6= ε 6= πΓ(y′′).

We now show that r := iq ∈ I and w′ := (π
{r}{s}
rs )−1(y′′) ∈ Σ+

rs fulfill the
statement of theorem 10.

For this w′ it holds πIKrs (w′) = y′′, ϕIKr (w′) = πΦ(y′′), γIKs (w′) = πΓ(y′′),
πIKik (w′) = ε for (i, k) ∈ (I × K) \ {(r, s)}, ϕIKi (w′) = ε for i ∈ I \ {r} and
γIKk (w′) = ε for k ∈ K \ {s}.

Together with (79) this implies

w′ ∈ w−1(LIK) ∩ Σ+
rs. (80)

Now the same argumentation as in case (1) shows

DP(πIKrs (ww′)) = DP(πIKrs (w))− 1,

DPF(ϕIKr (ww′)) = DPF(ϕIKr (w))− 1 and

DPG(γIKs (ww′)) = 0,

which completes the proof of theorem 10.

Iteration of theorem 10 and corollary 2 proves

Corollary 4. Let condition I - condition IV be fulfilled, then for each w ∈ LIK
there exists ŵ ∈ w−1(LIK) such that

DP(πIKik (wŵ)) ≤ DP(πIKik (w)),

DPF(ϕIKi (wŵ)) ≤ 1 and DPG(γIKk (wŵ)) = 0

for each i ∈ I and k ∈ K.

Now corollary 3 and (53) shows

Corollary 5. ∑
q∈QP \(EΦ∪PΦ)

ZP [α−1
P (πIKik (wŵ))](q) ≤ 1 and

∑
q∈QP \(EΓ∪PΓ)

ZP [α−1
P (πIKik (wŵ))](q) = 0

for (i, k) ∈ I ×K.

Now we reduce DPF(ϕIKi (wŵ)) in the situation of corollary 4 and 5 by the fol-
lowing

Condition V. For each x ∈ pre(πΦ(P�)) ∩ SF and qF ∈ QPF with
ZPF [α−1

PF (x)] = 1qF and R−1
Φ (qF ) ∩ (EΓ ∪ PΓ) 6= ∅ and

each (y, q) ∈ (pre(P�) ∩ L)× (R−1
Φ (qF ) ∩ (EΓ ∪ PΓ)) with
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ZP [α−1
P (y)](q) > 0,

∑
q′∈QP \(EΦ∪PΦ)

ZP [α−1
P (y)](q′) ≤ 1 and∑

q′∈QP \(EΓ∪PΓ)

ZP [α−1
P (y)](q′) = 0 the following holds:

If q ∈ PΓ then there exists y′ ∈ y−1(L) ∩ x−1(SF ) ∩ Φ+ with
δP (q, y′) ∈ FP and δPF (qF , y

′) ∈ FPF , and
if q ∈ EΓ \ PΓ, then for each z ∈ pre(πΓ(P�)) ∩ SG

with ZPG [α−1
PG(z)] = 0 there exists

y′′ ∈ y−1(L) ∩ π−1
Φ (x−1(SF )) ∩ π−1

Γ (z−1(SG)) with
δP (q, y′′) ∈ FP , δPF (qF , πΦ(y′′)) ∈ FPF , δPG(qG0, πΓ(y′′)) ∈ FPG and
πΦ(y′′) 6= ε 6= πΓ(y′′).

We now show that example 2 fulfills condition V.
By (71) EΓ ∪ PΓ = {II} ⊂ QP .

By definition II ∈ R−1
Φ (qF ) iff (II, qF ) ∈ RΦ.

So by (59)

R−1
Φ (qF ) ∩ (EΓ ∪ PΓ) 6= ∅ iff qF = II ∈ QPF . (81)

Now the automaton in Fig. 11(b) shows that

ZPF [α−1
PF (x)] = 1II for x ∈ pre(πΦ(P�)) ∩ SF

iff δSF (1, x) = 2. (82)

By (55) EΦ ∪ PΦ = {VI} ⊂ QP . So by the automaton in Fig. 10
(y, q) ∈ (pre(P�) ∩ L)× (R−1

Φ (II) ∩ (EΓ ∪ PΓ)) with

ZP [α−1
P (y)](q) > 0,

∑
q′∈QP \{VI}

ZP [α−1
P (y)](q′) ≤ 1 and∑

q′∈QP \{II}

ZP [α−1
P (y)](q′) = 0 implies

q = II ∈ QP and δL(1, y) = 2. (83)

By (71) EΓ \ PΓ = {II} and therefore q = II ∈ EΓ \ PΓ.
The automaton in Fig. 12(b) shows, that

ZPG [α−1
PG(z)] = 0 for z ∈ pre(πΓ(P�)) ∩ SG

iff δSG(1, z) = 1. (84)

Now (81) - (84) and the automata P (Fig. 6), PF (Fig. 11(a)), PG (Fig. 12(a)), SF
(Fig. 5(b)), SG (Fig. 5(c)) and L (Fig. 5(a)) show

δP (q, gxgyfyfzgz) = δP (II, gxgyfyfzgz) ∈ FP ,
δPF (qF , πΦ(gxgyfyfzgz)) = δPF (II, fyfz) ∈ FPF ,

δPG(qG0, πΓ(gxgyfyfzgz)) = δPG(I, gxgygz) ∈ FPG ,

gxgyfyfzgz ∈ y−1(L), πΦ(gxgyfyfzgz) ∈ x−1(SF ) and πΓ(gxgyfyfzgz ∈ z−1(SG).
So y′′ := gxgyfyfzgz fulfills condition V, which shows that example 2 fulfills condi-
tion V.

Theorem 11. Let conditions I - V be fulfilled and w ∈ LIK with
DPF(ϕIKi (w)) ≤ 1 and DPG(γIKk (w)) = 0 for each (i, k) ∈ I ×K.
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If DPF(ϕIKr (w)) = 1 for r ∈ I, then there exists s ∈ K and w′ ∈ w−1(LIK) ∩ Σ+
rs

with

DP(πIKrs (ww′)) < DP(πIKrs (w)) and DPF(ϕIKr (ww′)) = 0 = DPG(γIKs (ww′)).

Proof. By corollary 5 ∑
q′∈QP \(EΦ∪PΦ)

ZP [α−1
P (πIKik (w))](q′) ≤ 1 and

∑
q′∈QP \(EΓ∪PΓ)

ZP [α−1
P (πIKik (w))](q′) = 0 (85)

for each (i, k) ∈ I ×K.
DPF(ϕIKr (w)) = 1 for r ∈ I imply the existence of qF ∈ QPF with

ZPF [α−1
PF (ϕIKr (w))] = 1qF . (86)

Now by (50) there exists kq ∈ K and q ∈ R−1
Φ (qF ) with

ZP [α−1
P (πIKrkq (w))](q) > 0. (87)

On account of (85) this imply

q ∈ R−1
Φ (qF ) ∩ (EΓ ∪ PΓ). (88)

Now (85) - (88) and condition V imply (with x = ϕIKr (w) and y = πIKrkq (w)) for

each of the two cases q ∈ PΓ or q ∈ EΓ \ PΓ the existence of certain continuations
of πIKrkq (w) in L.

Case (1): q ∈ PΓ

By condition V there exists y′ ∈ (πIKrkq (w))−1(L) ∩ (ϕIKr (w))−1(SF ) ∩ Φ+ with

δP (q, y′) ∈ FP and δPF (qF , y
′) ∈ FPF . (89)

We now show that s := kq ∈ K and w′ := (π
{r}{s}
rs )−1(y′) ∈ Φ+

rs ⊂ Σ+
rs fulfill the

statement of theorem 11.
For this w′ it holds πIKrs (w′) = y′, ϕIKr (w′) = y′, πIKik (w′) = ε for (i, k) ∈

(I×K)\{(r, s)}, ϕIKi (w′) = ε for i ∈ I \{r} and γIKk (w′) = ε for k ∈ K. Together
with (89) this implies

w′ ∈ w−1(LIK) ∩ Σ+
rs. (90)

Let y′ = a1 . . . an with n ≥ 1 and ai ∈ Φ for i ∈ {1, . . . , n}. On account of
δP (q, y′) ∈ FP for i ∈ {1, . . . , n+ 1} there exists qi ∈ QP with q = q1, δP (qi, ai) =
ai+1 for i ∈ {1, . . . , n} and qn+1 ∈ FP .

By the same argumentation as in case (1) of the proof of theorem 9 we get

DP(πIKrs (ww′)) = DP(πIKrs (w))− 1.

The same argumentation concerning PF� shows DPF(ϕIKr (ww′)) = 0.
Because of w′ ∈ Φ+

rs it holds γIKs (w′) = ε and therefore

DPG(γIKs (ww′)) = DPG(γIKs (w)),

which completes the proof of theorem 11 for case (1).
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Case (2): q ∈ EΓ \ PΓ.
By assumption of theorem 11 ZPG [α−1

PG(γIKkq (w))] = 0.

So (with z = γIKkq (w)) condition V implies the existence of y′′ ∈ (πIKrkq (w))−1(L) ∩
π−1

Φ ((ϕIKr (w))−1(SF )) ∩ π−1
Γ ((γIKkq (w))−1(SG)) with

δP (q, y′′) ∈ FP , δPF (qF , πΦ(y′′)) ∈ FPF ,

δPG(qG0, πΓ(y′′)) ∈ FPG and

πΦ(y′′) 6= ε 6= πΓ(y′′). (91)

We now show that s := kq ∈ K and w′ := (π
{r}{s}
rs )−1(y′′) ∈ Σ+

rs fulfill the statement
of theorem 11.

For this w′ it holds πIKrs (w′) = y′′, ϕIKr (w′) = πΦ(y′′), γIKs (w′) = πΓ(y′′),
πIKik (w′) = ε for (i, k) ∈ (I × K) \ {(r, s)}, ϕIKi (w′) = ε for i ∈ I \ {r} and
γIKk (w′) = ε for k ∈ K \ {s}. Together with (91) this implies

w′ ∈ w−1(LIK) ∩ Σ+
rs. (92)

Now the same argumentation as in case (1) shows,

DP(πIKrs (ww′)) = DP(πIKrs (w))− 1,

DPF(ϕIKr (ww′)) = DPF(ϕIKr (w))− 1 and

DPG(γIKs (ww′)) = DPG(γIKs (w))

on account of δPG(qG0, γ
IK
s (w′)) = δPG(qG0, πΓ(y′′)) ∈ FPG .

This completes the proof of theorem 11.

Iteration of theorem 11 and corollary 4 proves

Corollary 6. Let condition I - V be fulfilled, then for each w ∈ LIK there exists
ŵ ∈ w−1(LIK) such that
DP(πIKik (wŵ)) ≤ DP(πIKik (w)) and DPF(ϕIKi (wŵ)) = 0 = DPG(γIKk (wŵ)) for each
(i, k) ∈ I ×K.

Now (51) and (53) proves

Corollary 7. For (i, k) ∈ I ×K holds∑
q∈QP \(EΦ∪PΦ)

ZP [α−1
P (πIKik (wŵ))](q) = 0 and

∑
q∈QP \(EΓ∪PΓ)

ZP [α−1
P (πIKik (wŵ))](q) = 0.

Now DP(πIKik (wŵ)) = 0 can be deduced from corollary 7 by following

Condition VI.

(EΦ ∪ PΦ) ∩ (EΓ ∪ PΓ) = ∅
So we get

Corollary 8. Let condition I - VI be fulfilled, then for each w ∈ LIK there exists
ŵ ∈ w−1(LIK) such that

DP(πIKik (wŵ)) = 0 = DPF(ϕIKi (wŵ)) = DPG(γIKk (wŵ))
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for each (i, k) ∈ I ×K, and therefore by theorem 8

wŵ ∈ LIK ∩
⋂

(i,k)∈I×K

(πIKik )−1(P�).

For our example we have shown EΦ = ∅ and PΦ = {VI} (55) as well as EΓ =
{II} and PΓ = ∅ (71). So condition VI is fulfilled.

Now by theorem 1, theorem 7 and corollary 8 conditions I - VI and self-similarity
of LIK imply simplicity of ΠIK

I′K′ on LIK . Therefore by conditions I - VI, together
with self-similarity and regularity of LIK , theorem 3 can be used to prove approx-
imate satisfaction of uniformly parameterised behaviour properties.

In Sect. 3 we applied theorem 3 to our example 2, where it remained to prove
simplicity of ΠIK

I′K′ on LIK . Now this gap is filled by the proofs that example 2
fulfills conditions I - VI.

These proofs show that under certain regularity restrictions (the product au-
tomata as in Fig. 10, 11(b) and 12(b) must be finite and deterministic) conditions I
- VI can be verified by semi-algorithms based on finite state methods. We only get
semi-algorithms but no algorithms, because the product automata are constructed
step by step and this procedure does not terminate if the corresponding product
automaton is not finite. These semi-algorithms only depend on L, SF , SG and P
and don’t refer to the general index sets I and K.

Conditions I - VI formalise our strategy to complete phases. There are several,
and partly more general, of such completion strategies to prove the statement of
corollary 8. The aim of condition I - VI was not only our special set of sufficient
conditions for uniformly parameterised behaviour properties but also to demon-
strate, how completion of phases strategies and corresponding success conditions
can be formalised by deterministic computations in shuffle automata.

6. CONCLUSIONS AND FUTURE WORK

In [Ochsenschläger and Rieke 2011] we have shown in particular that for self-similar
parameterised systems LIK the parameterised problem of verifying a uniformly pa-
rameterised safety property can be reduced to finite many fixed finite state problems.

Extending this, the main result of the present paper is a finite state verifica-
tion framework for uniformly parameterised behaviour properties capturing the full
spectrum of safety and liveness. This uniformly parameterisation exactly fits to the
scalability and reliability issues of complex systems or systems of systems such as
for example Cloud Computing platforms.

In this framework the concept of structuring cooperations into phases enables
completion of phases strategies. Consistent with this, corresponding success con-
ditions are formalised which produce finite state semi-algorithms (independent of
the concrete parameter setting) to verify behaviour properties of uniformly param-
eterised cooperations. The next step should be to integrate these semi-algorithms
in our SH verification tool [Ochsenschläger et al. 2000].

Besides safety and liveness properties so called hyperproperties [Clarkson and
Schneider 2008] are of interest because they give formalisations for non-interference
and non-inference. Further work could be to generalise the approach of this paper
to hyperproperties as well as to the Security Modeling Framework (SeMF) approach
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[Fuchs et al. 2009], where beside system behaviour also local views of agents and
agents knowledge about system behaviour are relevant.

7. APPENDIX

7.1 Proof of theorem 1

Let h : Σ∗ → Σ′∗ be an alphabetic homomorphism, B ⊂ Σ∗ prefix closed and
w ∈ Σ∗. Then

(h(w))−1(h(B)) ={v′ ∈ Σ′∗|h(w)v′ ∈ h(B)}
={v′ ∈ Σ′∗| there exists u ∈ h−1({h(w)}) and v ∈ u−1(B)

such that v′ = h(v)}

=
⋃

u∈h−1({h(w)})

{h(v) ∈ Σ′∗|v ∈ u−1(B)}

=
⋃

u∈h−1({h(w)})

h(u−1(B)) ⊃ h(w−1(B)). (93)

Let x = yz ∈ Σ∗, then by (93)

h(x−1(B)) = h((yz)−1(B)) = h(z−1(y−1(B))) ⊂ (h(z))−1[h(y−1(B))]. (94)

If h(x−1(B)) = (h(x))−1(h(B)) then

h(x−1(B)) = (h(y)h(z))−1(h(B)) = (h(z))−1[(h(y))−1(h(B))] and by (94)

(h(z))−1[(h(y))−1(h(B))] ⊂ (h(z))−1[h(y−1(B))]. (95)

(93) implies h(y−1(B)) ⊂ (h(y))−1(h(B)) and therefore

(h(z))−1[h(y−1(B))] ⊂ (h(z))−1[(h(y))−1(h(B))]. (96)

Now (95) and (96) imply

(h(z))−1[h(y−1(B))] = (h(z))−1[(h(y))−1(h(B))]. (97)

If x = yz ∈ B then

h(z) ∈ (h(y))−1(h(B)). (98)

(97) and (98) prove theorem 1.

7.2 A sufficient condition for self-similarity

The proof of the following sufficient condition for self-similarity of LIK is given in
[Ochsenschläger and Rieke 2010].

Let PF = (Φ, QPF , δPF , qPF0, FPF ) resp. PG = (Γ, QPG , δPG , qPG0, FPG) be
deterministic automata that accept PF resp. PG and let SF = (Φ, QSF , δSF , qSF0)
resp. SG = (Γ, QSG , δSG , qSG0) be deterministic automata that accept SF resp.
SG . If SF is deterministically based on PF w.r.t. PF resp. SG is deterministically
based on PG w.r.t. PG, then holds

Theorem 12. If for each (qSF , f) ∈ QSF×NQ0 and (q′SF , f
′) ∈ QSF×NQ0 for which

exists u, u′ ∈ SF ∩ (pre(PF ))� such that qSF = δSF (qSF0, u), q′SF = δSF (qSF0, u
′),
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f = Z[α−1(u)], f ′ = Z[α−1(u′)] and for which f ≥ f ′ holds

{a ∈ Φ ∩ pre(PF ) | δSF (qSF , a) is defined }
⊂ {a ∈ Φ ∩ pre(PF ) | δSF (q′SF , a) is defined } (99a)

and for each qPF ∈ QPF with f ′(qPF ) > 0 is

{a ∈ Φ \ pre(PF ) | δPF (qPF , a) and δSF (qSF , a) are defined }
⊂ {a ∈ Φ \ pre(PF ) | δPF (qPF , a) and δSF (q′SF , a) are defined } (99b)

and if corresponding conditions w.r.t. SG and PG are fulfilled,
then LIK is self-similar.

In example 2 let PF := πΦ(P ) and PG := πΓ(P ), then PF is given in Fig. 11(a)
and PG is given in Fig. 12(a). In Sect. 5 we have shown that SF resp. SG is based
deterministically on PF resp. PG w.r.t. PF resp. PG. The product automaton of
SG and PG� is given in Fig. 12(b).

To check the conditions of Theorem 12 w.r.t. SG and PG those pairs [(qSG , f),
(q′SG , f

′)] of states of the product automaton with f ≥ f ′ have to be considered.
Let for example (qSG , f) = (4, {(III, 1), (II, 1)}) and (q′SG , f

′) = (3, {(III, 1)}).
Then

{a ∈ Γ ∩ pre(PG) | δSG(4, a) is defined} = ∅
⊂ {gx} = {a ∈ Γ ∩ pre(PG) | δSG(3, a) is defined}

and

{q ∈ Q | f ′(q) > 0} = {III}.

Additionally

{a ∈ Γ \ pre(PG) | δ(III, a) and δSG(4, a) are defined} = {gz}
= {a ∈ Γ \ pre(PG) | δ(III, a) and δSG(3, a) are defined}.

Hence the conditions of Theorem 12 are fulfilled for the pair [(4, {(III, 1), (II, 1)}),
(3, {(III, 1)})]. Analogously this can be shown for all other pairs with f ≥ f ′. It also
can be proven that the conditions of Theorem 12 w.r.t. SF and PF are fulfilled.
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