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Uniform Parameterisation of
Phase Based Cooperations

Peter Ochsenschlager and Roland Rieke
Fraunhofer-Institute for Secure Information Technology SIT

Uniform parameterisations of phase based cooperations are defined in terms of formal language
theory. For such systems of cooperations a kind of self-similarity is formalised. Based on deter-
ministic computations in shuffle automata a sufficient condition for self-similarity is given. Under
certain regularity restrictions this condition can be verified by a semi-algorithm.

Key Words: cooperations as prefix closed languages, abstractions of system behaviour, self-
similarity in systems of cooperations, iterated shuffle products, deterministic computations in
shuffle automata

1. INTRODUCTION

As an example for cooperations let us consider an e-commerce protocol, that de-
termines how two cooperation partners have to perform a certain kind of financial
transactions. As such a protocol should work for several partners in the same man-
ner, it is parameterised by the partners and the parameterisation should be uniform
w.r.t. the partners.

To be able to verify entire families of parameterised systems, independent of
the exact number of replicated components, in [Ochsenschliger and Rieke 2007]
we developed an abstraction based approach to extend our current tool supported
verification techniques to such systems.

In this paper (Sect. 2) we formalise uniform parameterisations of two-sided co-
operations in terms of formal language theory, such that each pair of partners
cooperate in the same manner, and that the mechanism (schedule) to determine
how one partner may be involved in several cooperations, is the same for each
partner. Generalising each pair of partners cooperating in the same manner, the
following kind of self-similarity is desirable for such systems of cooperations: From
an abstracting point of view, where only actions of some selected partners are con-
sidered, the complex system of all partners behaves like the smaller subsystem of
the selected partners.

The main goal of this paper is a sufficient condition for this self-similarity (Sect. 6).
The main concepts for such a condition are structuring schedules into phases, which
may be shuffled in a restricted manner (Sect. 3), and shuffle automata, whose de-
terministic computations unambiguously describe how a cooperation partner is in-
volved in several phases (Sect. 4 and 5). For the notion of self-similarity it is of
interest to know, which kind of dynamic system properties are compatible with our
notion of abstraction. This is discussed in Sect. 6.

Contact address:  Fraunhofer-Institute for Secure Information Technology SIT, Rhein-
strasse 75, D-64295 Darmstadt, Germany, Web: http://www.sit.fraunhofer.de, E-Mail:
peter-ochsenschlaeger@t-online.de and roland.rieke@sit.fraunhofer.de
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4 . P. Ochsenschlager and R. Rieke

In [Jantzen 1985] the operations shuffle and iterated shuffle and in [Jedrzejowicz
1999] and [Jedrzejowicz and Szepietowski 2001] structural properties of shuffle au-
tomata are analysed and an algorithm for assigning a shuffle expression denoting
the language of the automaton is given. In [Bjorklund and Bojanczyk 2007] the
close connection between shuffle expressions and multicounter automata is demon-
strated.

Examples for the theory developed will be given in a forthcoming paper.

2. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally described by the set of its
possible sequences of actions. Therefore L C X* holds where X is the set of all ac-
tions of the system, and ¥* (free monoid over ) is the set of all finite sequences of
elements of ¥, including the empty sequence denoted by €. This terminology origi-
nates from the theory of formal languages [Sakarovitch 2009], where X is called the
alphabet (not necessarily finite), the elements of ¥ are called letters, the elements
of ¥* are referred to as words and the subsets of ¥* as formal languages. Words
can be composed: if u and v are words, then uv is also a word. This operation is
called the concatenation; especially eu = ue = u. A word u is called a prefix of a
word v if there is a word x such that v = uxz. The set of all prefixes of a word u is
denoted by pre(u); € € pre(u) holds for every word w.

Formal languages which describe system behaviour have the characteristic that
pre(u) C L holds for every word u € L. Such languages are called prefix closed.
System behaviour is thus described by prefix closed formal languages.

Different formal models of the same system are partially ordered with respect
to different levels of abstraction. Formally, abstractions are described by so called
alphabetic language homomorphisms. These are mappings h* : ¥* — X'* with
h*(xy) = h*(x)h*(y) , h*(e) = ¢ and h*(X) C ¥’ U {e}. So they are uniquely
defined by corresponding mappings h : ¥ — ¥’ U {e}. In the following we denote
both the mapping h and the homomorphism A* by h. In this paper we consider
a lot of alphabetic language homomorphisms. So for simplicity we tacitly assume
that a mapping between free monoids is an alphabetic language homomorphism if
nothing contrary is stated.

To describe a two-sided cooperation, let ¥ = ® U I where @ is the set of actions
of cooperation partner F' and I' is the set of actions of cooperation partner G. Now
a prefix closed language L C (® U I')* formally defines a two-sided cooperation.

For parameter sets I, K and (i, k) € I x K let ¥;; denote pairwise disjoint copies
of X. The elements of ¥;;, are denoted by a;; and Xk := U Yik- The index

(i,k)EIX K
tk describes the bijection a < a;; for a € ¥ and a; € X5, Now Lrx C Xix
(prefix-closed) describes a parameterised cooperation. To avoid pathological cases
we generally assume parameter and index sets to be non empty.

For (i,k) € I x K let

a| Arg € Eik

IK . * * : IK ) —
g s Nl — X with 75" (ars) { e ane € Nrxe \ Sin

For uniformly parameterised systems L;x we generally want to have
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Phase Based Cooperations . 5

Likc () (=)L)

(i,k)eIx K

In addition to this inclusion Lrx is defined by local schedules that determine
how each “version of a partner” can participate in “different cooperations”. More
precisely, let SE' C ®*, SG C I'* be prefix closed. For (i,k) € I x K, let

a ‘ Qrs € (I){Z}K

d
e| ars € Xrx \ @iy o

<pr : X7 — P* with cpr(am) = {

a | ars € FI{k}
€| ars € X1 \ Ty

)

A 5 je = T with o o) = {
where @7 and I';i are defined correspondingly to ¥k

Definition 1. Let I, K be finite parameter sets, then

Lix= () @O TSP N () () 7HSE)

(i,k)eIX K il kEK
denotes a uniformly parameterised cooperation.
By this definition
Laypy = @ 7@ 0 Y THSE) 0 (T (s ).

As we want L(1)(1} beeing isomorphic to L by the isomorphism
wi{}}{l} Xy — X7 we additionally need (wi{}}{l})’l(L) C (gpil}{l})’l(SF)

and (71'3}{1})_1(11) c (’yi{l}{l})_l(SG). This is equivalent to me(L) C SF and
(L) C SG, where mg : ¥* — ®* and 7p : * — I'* are defined by

alacd alael
W@(a):{giaer andﬂ'p(a):{giaeq).

So we complete definition 1 by the additional conditions 7¢(L) C SF and np(L) C
SG. Now we consider special abstractions on L.

Definition 2. For I' C I and K' C K let

Qrs | Qrs € ZI’K/

HI/I(/ : E* — 2*/ ’ with HI/I</ Q. =
I'K IK I'K IK( 7"5) E| aTSEEIK\ZI'K/

Lemma 1. For I' C I, K' C K, and, L C ¥*, SF C ®*, SG € T* prefiz closed
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6 . P. Ochsenschlager and R. Rieke

and non-empty, the following relationships hold:

(0;") M) D B forie I\,
()" (e) D Digr for ke K\ K,
N (7)) = ik
(i,k)e(IXK)\(I'xK")
e (i) L)) = (whS) 7N (L) for (i,k) € T x K,
75 ()T (SF)] = Sty fori e INT,
75 (™)~ H(SG)] = Shg for ke K\ K,
I [(m ) (L)) = Shr for (4,k) € (I x K)\ (I' x K').

Proof.

(1a) @I (x) = ¢ for each x € ¥%,- and i € I\ I’, which implies (1a).

(1b) Follows analogously.

(1c) Forz € X%, x € X%, 1, holds iff 71K () = ¢ for each (i, k) = (IxK)\(I' xK'),

which implies (1c).

(1d) = € S% g and 745 (z) € L, for x € (xfX)~1(L). From this it follows
that = € S, ©iK(x) = 745 () € L and & = TIJK. (), which implies
v € UK [(x1) ()], Hence (1<) (L) © TS, (7)1 (L)]. For a €
K (7 FE)~H(L)] exists y € X%, such that 715 (y) € L and z = IIIK,, (y).

Since (i,k) € I' x K' it follows that 75 (y) = =2, K" (K. (y)) = oK’
which proves the inclusion TTHE., [(x1K)~Y(L)] c (x1.X")~1(L).

(x) e L

(le) For x € X%, and ¢ € I\ I’ holds z € S}, o/f(z) = ¢ € SF and x €
ZE. (), and so x € TIEK., [(o!F)~1(SF)]. Hence X%, ., C IIEK., [(0IF)~1(SF)].

: : IK .y x
The reverse inclusion holds because of I1}/%/ : X7 — X7/ /-

(1f) and (1g) The proofs are analogous to the proof for (1le).

Theorem 1.
Lix D Lpg forI'x K' C I x K, and therefore
7/ (Lrx) D Mif5 (Lrgr) = Lok

Proof.
Because of (1a)-(1c)
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Phase Based Cooperations . 7

Lix= [ [@E)HL)N@F)HSF) N (5 H(SE)]

(i,k)eIXK
= ) 1@ HE) N () THSF) N () THSE)N
(i,k)el’ x K’
N N (T N () )N SF)N
(i,k)e(Ix K)\(I'x K") i€I\I'
n ) 7s6)
keEK\K'
5 () I@EHOTHL) N (el ) THSF) N () TSN
(i,k)el’ XK'
N N @O n ) @ () e
(i,k)e(Ix K)\(I'xK") ieI\I’ kEK\K'
5 () [@HOTHL) N (@) THSF) 0 (v THSG) N S
(i,k) el XK'
= ) (=)@ 0@ ) HSF) N (3 K 7HSE)) = Lk
(i,k) €' XK'

Examples show that the reverse inclusions
K (Lix) C Lpg forall I’ x K' ¢ I x K (2)

do not hold in general.

In the general case we don’t know the decidability status of (2). But for many
parameterised systems (2), and therefore TI15., (L) = Ly, which is a gener-
alisation of 7/’ (Lx) = L, is a desirable property, because it describes a kind of
self-similarity: From an abstracting point of view, where only the actions of 3/ k-
are considered, the complex system Lk behaves like the smaller subsystem L/ k.
So we are looking for conditions, which imply (2). For this, some preliminary
considerations are needed.

In general for a mapping f : X — Y and a family (At):er of sets with 4; C X
for each t € T

F() A € () £(A) (3)
teT teT
The definition of Lrx can be transformed

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



8 . P. Ochsenschlager and R. Rieke

Lik= () @SN () () 7HSE)

(i,k)eIX K il keK
= ) OO0 ETHSEN () ()7 s6) n
(i,k)el’ XK' iel’ keK’
N (@O N ) @SN () ()7 (sE)
(i,k)e(Ix K)\(I' xK") ieI\I’ keEK\K'
= () @O OO EOTH@IN ) HSF)IN
(i,k)el' XK' iel’ seK
) [ EE DN G Hs6) N
keK'’' rel
N @D N () @SN () (i) 7Hs6)
(i,k)e(IXK)\(I'xK") ISTAVA keK\K’

With (3) and (1d)-(1g) from this it follows that

O (L) () @R @) n
(k) el <K'

() I () (w1 N ()T SF) N

iel’ seK
() T @O () SN
keK' rel

Therefore, to prove (2), it is sufficient to show

i (L) ) TH@ N (0]F) TS F)) € (0] ©) 7 (SF) (4)
seEK
for I' I, K' C K, all i € I, and to show corresponding inclusions with respect
to yi K, ALK and SG for all k € K'.
For (r,s) € I x K let

IK | wx . k. . Jal ar€Xk,(r,s)=(i,k) and a € ®
ers + Xk — @ with ¢ (aik) := { | ap € X1k, (r,s) # (i,k) or a ¢ @
Hence ¢!X = 15 o 1l K.
Because of L C m5'(ma(L)) and the precondition mg(L) C SF it follows that
(mH) 7N L) € (w ) Mg (ma (L))] = (9}H) " (ma (L)) € (91F) 1 (SF).

Therefore it is sufficient for the proof of (4) to show

5 ([ (@) THSE) N (9] ) THSF)] € (0] )71 (SE). (5)
seEK
Let
* * . a; ai, € O
mlK e — B with ©hK (ag) = { ’; { ai’}: c FII;I:
Let

Pt @l — @ with f (2) = [ ()
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Phase Based Cooperations . 9
and
Pik i — @ with i (2) == ¢ (2)

for each x € @) and (i,k) € I x K.

So

pi = pi" oy and i = @i oy for (i,k) € I x K, (6)
as well as

A (755) 7 (y) = (r§ X) "1 (5 (y)) for each y € @y, (7)

! ! . .
where 7L K" . %, ., — ®%, 1, is defined corresponding to 7LK.

(7) is a special case of Lemma 2, which will be proven below.
Because of (6) and (7) now we have
I ([N (@l HSF) N (9]F)~H(SF)] =

seK
= I}/ [(m™) M QK(iff)‘l(SF)] N (i) H(SF)) =
= (g ") I 1l QK(@sz)‘l(SF)] N (@)~ (SF)],

and (] %) (SF) = (mg *) (@ )T SF)).
For the proof of (5) it is therefore sufficient to show

5 [ (@) TSP N (@) (SF)] C (@ X)) (SF). (8)
seK
For index sets S and T'and S’ x T" € S x T let
Gotrs By — B with @oi, () := Mg () for z € Ohp C ko
With this (8) is equivalent to
G1i [ (@) SP)IN (2 )" (SF)] C (@ ©') ' (SF). 9)
seK
From the definitions it follows that
_ _{}K . _ _{i})K . .
PIC = @l 0l and I = G 0 I for (i, k) e T x K. (10)
For I’ x K' c I x K and 7 € I’ holds

@55{/((@?%1{)_1(9)) = (@fifl{')_l(@?@('(?})) for y € ®F; k- (11)

(11) is a special case of Lemma 2, which will be proven below.
Because of (10) and (11) it holds

Piric L N (@) THSI N (p]%)H(SF)] =

seK
= (@) el QK<¢§§}K>—1<SF>] N (@) ~1(SF)] and

(@I E)~HSF) = (@1 (@)~ (SF)] for i € T
So for the proof of (9) it is sufficient to show
. i} K [} K YK\
Pl @) TSP N @) sF) ¢ ()T sE) (2
seK
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



10 . P. Ochsenschlager and R. Rieke

Since pIE. (z) = gﬁgig, (x) for v € @y and i € I, (12) is equivalent to

PN @)Y s N (@) sP) < (@) M sF) (13
seK

(13) has to be proven for arbitray index sets K’ C K and each i € I’ C I.

From the definitions of gég}},g,, @l{si}K, gbz{i}K, and @l{i}K, it follows directly that for

each i € I’, (13) is the same inclusion

2ol (@) SFIN (™) (SF)] C (™)1 (SF) (14)
seK

up to isomorphism.
For definition of the homomorphisms occurring therein, let K be an arbitrary index
set, and for each s € K let ®, be a copy of ®. Let all ®; be pairwise disjoint. The

index s describes the bijection a < as for a € ® and as € &, and P := |J Ps.
seK

[o7% | a, € Py
€| CLTG(I)K\(I)K/ ’
al| ar € Oy
el a. € P\ Ps -’
Let ¢ : &% — ®* with ¢ (a,) := a for each r € K and a, € ®,.
Now, up to equations (7) and (11), we have shown the following

For K' C K, let ¢, : &% — @k, with ¢, (a,) := {

For s € K, let ¢ : @3 — &* with ¢X(a,) = {

Theorem 2.
Let I' x K' C I x K. Assuming (14) and a corresponding inclusion concerning SG,
then H{,I%/ (ﬁ]K) = ﬁ]/K/.

To prove (14) we have to show that
i (w) € (§*)TH(SF) for each w € [(1) (@) M (SF) N (9F) TN (SF).  (15)
seEK

Equations (7) and (11) are special cases of a more general lemma.
For a set X and X’ C X let

X . * 1% . X L a | a &€ X'
s X — X with 75/ (a) '_{5| ac X\ X
Lemma 2 (projection-lemma).
Let X' X, YCX andY' :=X'NY, then
(@) 7 Hy)) = (75) " (7X (y)) for each y € Y (16)
Proof. Let y € Y*. We show
m (13 (2)) = w3 (y) for each z € (mF) 71 (y) (17)
and we show that
for each u € (w5 )~ (7%, (y)) there exists a v € (mi¥) " (y) such that %, (v) = u.

(18)
From (17) it follows that 7%, ((m5%) " (y)) C (7))~ (7%, (y)) and from (18) it
follows that (m55,) (7%, (y)) € 7%, ()~ (y)) which in turn proves (16).
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Phase Based Cooperations . 11

Proof of (17):
By definition of m5¥, 5, and 7%, follows 7%, (7%, (2)) = 7%, (75 (2)) for each z € X*
and therewith (17).
Proof of (18) by induction on y € Y*:
Induction base.
Let y = ¢, then u € (X’ \ Y')* for each u € (75,) " (7%, (v)).
From this follows 73, (v) = u with v := u € (m55 ) ~1(e).
Induction step. Let y =gy withy e Y* and g € Y.
Case 1: g eY\Y' =Y N(X\X')
Then (%)~ (7% () = (255) 7 (7 ().
By induction hypothesis then for each u € (755, )~ (7%, (y)) it exists © € (75) (%)
such that 7%, (9) = u.
With v := 97 holds 755 (09) = 9§ = y and hence v € (m5r) " 1(y) and 7%, (v) =
% (D) = u.
Case 2: geY' Cc X'
Then 7%, (y) = 7%, (§). Therefore each u € (75,)~ (7%, (y)) can be departed into
u = aji with @ € (m35) (7%, () and @ € (X' \ Y')*. By induction hypothesis
then exists ¢ € (m5%)~1(y) such that 7%, (0) = .
With v := 994 holds 75X (094) = 9§ = y and hence v € (m3 )~ (y) and 7%, (v) =
7%, (0)§0 = ugi = u.
This completes the proof of (18). O

Remark. (7) follows from (16) by X = Xk, X' = Xpg and YV = $x. (11)
follows from (16) by X = ®rx, X' = g and Y = &g

3. SCHEDULES BASED ON PHASES
By definitions of X and ¢ it holds
@™ (w) € SF™ for each w € [ [ (2X) ™ (SF)| N (™)' (SF),
seK
where SF™ denotes the iterated shuffle product of SF.

Definition 3.

P = @N[ﬂ (TN "Y(P U {e})] for P C ©*.
teN
For the definition of the homomorphisms O and 7N, let ¢+ € IN, and for each ¢
let ¥; be a copy of ¥. Let all ¥; be pairwise disjoint. The index t describes the

bijection a < a; for a € 3 and a; € X.
Let ¥ := | %, and for each t € IN let the homomorphisms 7N and O be

teN
defined by

al as €%y
5|CLSEE]N\Et

and ON : ¥% — %* with ON(a;) := a for a; € ¥; and t € .

TN YN — X with 7N (a,) = {

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



12 . P. Ochsenschlager and R. Rieke

If we similarly define 7/ : $% — X* for k € K and ©F : X3 — ¥* for arbitrary
index sets K, then we have gf = 7 and ¢ = ©K for & = %.

Definition 3 looks different to the usual one of iterated shuffle products, as for
example in [Jantzen 1985]. But it is easy to see that they are equivalent. We use
our kind of definition, as it is more adequate to the considerations in this paper.

Directly from the definition it follows that pre(P“) = (pre(P))* and P* c P
for P C P. A detailed analysis of the structure of iterated shuffle products will
pave the way for a sufficient condition for (14). For that, additional definitions and
lemmata are required.

Definition 4.
SF C ®* is based on a phase PF C ®*, iff SF = pre(PF" N SF).

If SF is based on PF, then SF C pre(PF"™) = (pre(PF))" and
SF =pre(PF))* NSF.
Furthermore, it follows that SF"' C ((pre(PF))“)".

For the subsequent considerations let S and T" be arbitrary index sets and M C
Y*. Foreach S’ C S and TV C T let

! !’ . ! ’
@g,XT $ X% — Lo with GE,XT (a(s,)) := as for each a(, ) € Ly and

’ !’ ! ’
03T .k v — Y with 05,57 (a(s,p)) = az for each a(sy) € Lerxr.

Lemma 3 (Shuffle-lemma 1).
Let S, T arbitrary index sets and M C X%, then

NE TN =0T () @D An),  (19)

seS teT (5,t)ESXT

and, since @57 =05 0 @3*T,

SO () A =T () (757 ()] (19b)

s€ES teT (s,t)eSXT

Proof. For x € ¥¢ let
Us = {(ys)ses € [N (1) "L(M)]¥ | 75(x) = ©T (ys) for each s € S} and
teT
Voimfze N (7)71M) | 057 (2) = a).
(s,t)eSXT
Then z € () (2)7OT (N (rF)~H(M))] & U, # 0 and
seS teT
ze0F N ()TN e Ve £ 0.
(s,t)eSxT
Hence () (72)7'OT(N (F) M) =05 N (7373)) 7 (M)
s€S teT (s,;t)eSXT
it U, #0 < V, # 0 for each z € X% .
These equivalences hold, if for each x € ¥§ a surjective mapping xg : Vp, — U,
exists.
For z € ¥§ and z € N (T(Ssxt)T)_l(M) let therefore xy(z) == (ys)ses with
(s,t)eSXT

s T
ye = O8I WIFT (2)).

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations . 13

From this it follows that 7 (ys) = 7 (@{S}XT(HST (2))) = T(ixt)T(z) € M for each

{S}T
(s,t) € S x T, thus y, € (N (7})~1(M) for each s € S.
teT
If 2 = 057 (2), then r5(2) = OUIT(IFT(2)) = OT(OFT(WFL(2))) =

©7(y,) for each s € S and hence (ys)ses € Us.

Therefore, k, defines a mapping k., : V, — U,.

Ky 1S surjective:

For each s € S and y, € () (7)) (M) exists an y’. € ) ( ({9 g)XT) (M) such
teT teT

that y, = O T(y)). If additionally 75(z) = ©7(y,) = OT (O T (y)) =

OlsXT(y) for each s € S, then there exists z € N (T(SXT)*l(M) with

s,t)

(s,t)eSXT
H?T}T( z) and ©3*7 (2) = x. For this 2z now k,(2) = (@;S}XT(HEW;T( N)ses =
(@; }XT(ys))seg = (ys)ses and hence &, is surjective. O

Definition 5. Let S be an arbitrary inder set. For each x € 5[ (7)1 (M)
ses

there exists u € () (r2)~1(M) such that x = ©%(u). We call u a structured rep-
ses
resentation of x w.r.t. S. For x € ¥* let SRS, (x) := (0%)"Yx)n [N (%)~ (M)].
S

ES
It is the set of all structured representations of x w.r.t. S and fited M C X*.
Now z € PY iff there exists a countable index set S with SR (pu(ep (@) # 0

(see Lemma 4). If 2 € P“, then generally SR(PU{E})( x) contains more than one
element.

If t : S — T is a bijection, then it defines an isomorphism v, : ¥§ — X7, with
v,(as) = a,(s) for each s € S. For this isomorphism holds

v (SR3;(2)) = v [(0%) " (@)]nw [ N (7)1 (M)] = (6T) 7 (@)n[ N v ((7F) " (M)]-

seS ses
Since TLT(S) oy, = 77, it follows that

v (SR () = (0F) @) N[N (7)1 (M)] = (0F) @) n [N (7))~ H(M)] =

s€S teT
SRY, (z). In summary we have

Lemma 4 (Shuffle-lemma 2).
If a bijection between S and T exists, then ©5[  (r2)~1(M)] = 0T N (r)~1(M))

seS teT
for M C X*.
For an arbitrary index set S and S’ C S let

as | as € Bgr

S Ly * i 2 =
Iz : £ — T% WlthHS’(as){ el as €Xs\ g

Lemma 5 (Shuffle-lemma 3).
Let M C ¥*, S, T index sets and y € X%, with TSX)T( ) € M for each (s,t) €

ST and x = 03T (y) € X%, then M5XT.(y) € SRS*T (05 (1S, (x))) for each
S'cS.
Remark. The hypotheses of this lemma are given by (19a).
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14 . P. Ochsenschlager and R. Rieke

Proof. Tt holds 5% (y) € Sk .
For a(s ) € Xgxr \ Xs/x7 holds GS/XT(Hg,XXTT(a(S7t))) =¢and
0% (I3, (05" (a(s)))) = O (I3, (a,)) = &. /
For as ) € Sg/xr holds ©F XT(HE,XXTT(G(S@)) =09 *T(a(s4) = a and
0% (I3, (05 (a(..)) = O (115 (a,)) = .
This implies ©° XT(Hg,XXTT(/y)) = 0% (11 (z)).
For (s,t) € S’ x T holds TitX)T(Hg,XXTT(y)) = T(‘iXt)T(y) € M. This proves Lemma E
We will now apply the three shuffle lemmata to the expressions of (14) and (15).
To do this, the terminology has to be adapted. With the substitution ® = ¥, it
holds ¢, =T1%,, f = 7% and ¢ = ©F.
If SF is based on PF, then SF C (pre(PF))", thus by Lemma 3

(@) HSE) = () (=) 7HSE) € () (515 (pre(PF))™]

s€K seK seK
= () ) HON() (7) " (pre(PF)))]
sEK telN

=0 N ) GEEH Hpre(PF)).
(s,t)e(K xIN)

For w € () (¢X)~1(SF) this implies w = OX*N(y), and
seK

PK(w) = OF (O N(y) = OKNy) forany e () (73N (pre(PF)).
(s,t)E(K xNN)

Hence
y € SRS, L (55 (w)). (20)
According to Lemma 5 for K/ C K now:
HON() € SRS ) (0F (L, (01 (y)))) = SREN 1 (65 (4, (w). (21)

Generally for u € SF an y € SRnge]g\IPF)

partner F' is involved in several phases”.

Unfortunately this is ambiguous if SRnge](NP F)(u) contains more than one element.

If K’ # () and K is finite, then K x IN and K’ x IN are countable, thus isomorphic
to IN.

From the existence of y € S Rf){rXe](NP F)(@K (w)) and likewise of

<N (y) € SRgrlg(ﬂ}\iF)(QK/(aﬁﬁ,(w)), it follows by Lemma 4 that

@ (w) € (pre(PF))Y as well as 3& (pK, (w)) € (pre(PF))Y.
Later we will use these considerations for a sufficient condition for (14).

The idea of such a condition is the following: For a cooperation partner the
“possibilities of acting in a phase” depend on a “kind of resources”. So the “more
phases a partner is involved in”, the less possibilities of acting in each phase he has.

To formalise this intuition we need an unambiguous description of “how a coop-
eration partner is involved in several phases”. This will be done by an automaton
representation of the iterated shuffle product.

(u) describes “how the cooperation
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Phase Based Cooperations . 15

4. SHUFFLE AUTOMATA

Let P C X" and A = (3,Q,A,q0, F) with A C QXX XQ, g € Qand F C Q

be an (not necessarily finite) automaton that accepts P. To exclude pathological

cases we assume € ¢ P # (). A consequence of this is in particular that gy ¢ F.
For the construction of A" the set ]N(Cj2 (set of all functions from @ in INy) plays

a central role. In ]NOQ we distinguish the following functions:

0¢€ ]NOQ with 0(x) = 0 for each x € @, and for ¢ € @ the function 14 € ]NOQ with

1| z=g¢q
1,(x) = .
0 ={0] 226\ @)
As usual for numerical functions, a partial order as well as addition and partial
subtraction are defined:

For f,g € ]Ng2 let

- f=giff f(x) > g(z) for each z € Q,

~ f+geNg with (f +g)(z) := f(z) + g(z) for each 2 € Q, and

—for f>g, f—ge€ ]NOQ with (f — g)(x) := f(x) — g(z) for each z € Q.

The key idea of A™ is, to record in the functions of ]NOQ how many “open phases”
are in each state ¢ € @) respectively. Its state transition relation A" is composed
of four subsets whose elements describe

— the “entry into a new phase”,

— the “transition within an open phase”,

— the “completion of an open phase”,

— the “entry into a new phase with simultaneous completion of this phase”.

With these definitions we now define the shuffle automaton A" as follows:

Definition 6 (shuffle automaton).
The shuffle automaton A“ = (E,]NSQ,A”J,O, {0}) w.rt. A is an automaton with
infinite state set ]Ng2 and

AY ={(f,a,f+1,) € N¢ x £ x N& | (qo,a,p) € A and it exists (p,z,y) € A} U
U A{(f,a,f+1,—-1,) € ]Ng2 X X X ]NOQ | f>14,(¢g,a,p) € A and it exists
(p,w,y) € A} U
U {(f,a, f—1,) E]NOQ ><Z><]N§2 | f>14(¢,a,p) €A andp e F} U
U {(f,a, f) e ]NOQ x 3 X ]Né? | (qo,a,p) € A and p € F}.

Generally A" is a non-deterministic automaton. In the literature such automata
are called multicounter automata [Bjorklund and Bojanczyk 2007] and it is known
that they accept the iterated shuffle products [Jedrzejowicz 1999]. For our purposes
deterministic computations of these automata are very important. To analyse these
aspects more deeply we use our own notation and proof of the main theorems.

To prove the following theorem for simplicity we assume that A is deterministic.
Le., the state transition relation A can be described by a partial function § :
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16 . P. Ochsenschlager and R. Rieke

Q x ¥ — @ which is extended to a partial function § : Q x ¥* — @ as usual
[Sakarovitch 2009]. Additionally we assume that A does not contain superfluous
states, i.e. 6(qo,pre(P)) = Q. So A" can be represented by

A" =AUAUAUA with
A={(f,a,f+1,) € N? x & x N | 8(qo,a) = p and it exists b € ¥ such that
d(p,b) is defined},
A:{(f,a,f—l—lp—lq) € ]Né2 X ¥ X ]NOQ | f>1,,6(q,a) =p and it exists b € X
such that d(p,b) is defined},
A={(fa,f—1,) e N¢ xS xN? | f>1, and 6(¢,a) € F} and
A={(f,a,f) e N? x £ x N | 5(qo,a) € F}.

Let A C (A")* be the set of all paths in A" starting with the initial state 0 and
including the empty path . For w € A, Z(w) denotes the final state of the path and
Z(e) := 0. Formally the prefix closed language A and the function Z : A — ]Nf)g
is defined inductively by e € A, Z(e) := 0, and if w € A with Z(w) = f and
(f,a,9) € A™ then w(f,a,9) € A and Z(w(f,a,g)) := g. Let o/ : (A*M)* — X*
be the homomorphism with o/((f,a,g)) = a for (f,a,g) € A", and let o := o ,.
Hence w € A is an accepting path of a word v € ¥* iff Z(w) = 0 and a(w) = u.
We denote the language accepted by A™ with L(A").

Theorem 3.

PY C L(AY) (22a)
L(AY) c P™ (22b)

The automaton A™Y accepts the language P™.

Proof. Together with the alphabet 3 we now consider four pairwise disjoint alpha-
bets i, 203, ¥, ¥ and a homomorphism A : S Y withY =X UXUS YUY and
Aa) := A(a) := A(a) := A(a) := a for each a € 3.

For words u € P C X% the four alphabets are used to characterise start-, inner-,
end-, or start-end letters of u. Let therefore P:= A1 (P)N[EY*T U Y| C .
Since € ¢ P, A|p : P — P is a bijection.

According to the definitions of 3, 7N and ON we now consider
i]t ::ituitUitUitfortelNandi'tN:f]&Hi* and(:)m:i]i’f\lﬂi*,with
N = U 3. Therewith now

selN

P =oN(()(#N) TP u{e}) = AN G T (P U {el)] = A(PY).

teN teN
We can now show two relations between pre[ () (#N)~1(PU{e})] = N (#N)(pre(P))

teN teN
and A that prove Theorem 3. We first show
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Proposition 1. For each = € () (7))~ (pre(P)) there exists y € A such that
teN

a(y) = AON(x)) and Z(y)(g) = #({t € N | 8(q0, A(7](2))) = ¢ and 7N(x) ¢
PU{e}}) for each q € Q, where #(X) denotes the cardinality of the set X.
Taking into account that z € () (FN)~"1(PU{e}) iff z € N ()~ (pre(P)) and
teN telN
#N(x) € PU{e} for each t € IN then from Proposition 1 it directly follows that
PY C L(AY).
Proof of Proposition 1 by induction:
Induction base. With y = e, Proposition 1 holds for x = ¢.
Induction step.

Let ' = za, € pre[ () (FN)"1(P U {e})] with s € 3.
teN

Then also x € pre[ () (#¥)*(P U {e})] and by induction hypothesis it exists an
teN

y € A such that a(y) = A(ON(x)) and Z(y)(q) = #({t € N | 6(g0, AGN(2))) = ¢
and 7N(z) ¢ P U {e}}) for eacthQ

Accordlng to the union 3 := ¥ U ¥ U ¥ U ¥ we now have to consider four cases:

Case 1: a5 € 34
Then 6(qo, A(7, ]N(&S))) = p, it exists b € ¥ such that &(p, b) is defined, 71 (a,) ¢
PU{e} and 7N (z) =e.
Because of the first two statements, we have (Z(y), A(7N(a,)), Z(y) +1,) € A,
which implies ¢’ = y(Z(y), /\(T]N(as)) Z(Ay) +1,)€eA and
a(y') = aly) A (7](as) = AON(2)) A (91N(as)) = A(ON ().
Since 7N (z) = ¢, #N(a,) ¢ PU {5} and Tt N(as) = ¢ for t € N\ {e}, it holds:
#({t € N | (g0, A(PN(zay))) = ¢ and 7 N () X PU{e}}) =
= #({t € N\ {s} | 5(q0, A\(7, ]N(xas))) = ¢ and 7fN(wa,) ¢ PU{e}}) + #({t €
{s} | 0(qo, A(7(zas))) = ¢’ and 7 (wa,) j: PU{€}}) )
= #({t € WA {s} | olao, A7 D (@ ))) = ¢ and 7(z) ¢ PU{e}}) + #({t €
{s} | 0(q0, N(7(@))) = q'}) = )
=#({t e N| 5((107 (7)) = ¢ and 7% (x) & PU{e}}) +1,(q") = Z(y)(¢) +
1,(¢") for each ¢’ € Q. This completes the induction step for case 1.
Case 2: a, € XD)S
Then 5(q0,/\(ﬂN(x))) = q, 0(q, \(7s N(as))) = p, and it exists b € ¥ such that
8(p,b) is defined, 7N (z) ¢ P U {e} and 7N(a,) ¢ P U {e}.
Because of the first three statements, Z(y) > 1, and (Z(y), A
1, —1,) € A. As in case 1 it follows y/ = ( (y), (;N( s
;) € A and a(y') = afy) A (?]N(&s)) = A(@]N( ) A (O%(as)
Since #N(z) ¢ P U {e} and 7N(a ) ¢ PuU {5} analogue to
#({t € N | 3(q0. AN () = ¢ and WP(xa,) ¢ PU {e
N | 6(d0, AGN(2))) = ¢’ and i) ¢ PU{e}) - 1y(q') +
¢ € Q. This completes the induction step for case 2.
Case 3: 4, € X4 R
Then 8(q0, AN (2))) = g, (g, AN (@,))) € F, #8(2) ¢ PU{e} and 78 (za,) €
P.
Because of the first two statements, Z(y) > 1, and (Z(y), A(7X(as)), Z(y) —

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.

asl
o= #{t €
»(d)



18 . P. Ochsenschlager and R. Rieke

1,) € A. As in case 1 it follqws y = ( (v), AN(7N(as)), Z(y) — 1,) € A and
oly’) = a(y) A (72 (as)) = A(@]N(JU)) (O (as)) = A(ON(")).
Since 7N (z) §Z P U {e} and 7T (asdg) epP analogue to case 2 it holds #({t €
N | 8(q0, AN (2,)) = ¢’ and #8(za,) ¢ PU{e}}) = Z()(d) — 14(a') +0(¢)
for each ¢’ € Q. This completes the induction step for case 3.
Case 4: a, € i
Then §(qo, AN(7N(as))) € F, #N(z) = ¢ and #N(a,) € P. Because of the first
statement, (Z(y), A(7 ]N(d ), Z(y)) € A.

S

As in case 1 it follows ¢ = y(Z(y), A(7{ (as)), Z(y)) € A and a(y') = a(y) A
(7(as)) = NON(2)) A \( O (ds)) = A(ON ().

Since #N(z) = ¢ and #N(a ) € P analogue to case 1 and case 3 it holds #({t €
N | 0(qo, A7 (@) = ¢’ and 7f(zas) ¢ PU{e}}) = Z(y)(q') + 0(q') for
each ¢’ € Q. This completes the induction step for case 4 and the proof of
Proposition 1.

For the proof of L(A™) C P* (22b) we now show

Proposition 2. For each y € A exists x € () (7))~ (pre(P)) such that a(y) =
teN

ANON(2)) and Z(y)(q) = #({t € N | 6(q0, A(FN(@))) = g and #(x) ¢ P U {e}})
for each q € Q.

As in Proposition 1 from Proposition 2 follows L(A™) C P* (22b).
Proof of Proposition 2 by induction:
Induction base. With x = e, Proposition 2 holds for y = e.
Induction step.
Let ' = y(Z(y),a,9) € A with (Z(y),a,g) € A*. Then also y € A and by induc-

tion hypothesis exists an € () (FN)~!(pre(P)) such that a(y) = A(ON(z)) and
teN

Z(y)(q) = #({t € N | §(q0, N7 (2))) = ¢ and 7(z) & P U {e}}) for cach ¢ € Q.

According to the (not necessarily disjoint) union AY = AU AUAUA we have
to consider four cases:

Case 1: (Z(y),a,9) € A
Then g = Z(y) + 1, with §(gp,a) = p and it exists b € X such that (p,b)
is defined and it exists s € IN such that 7N(x ) = ¢. Let now a5 € 3, with
AN (as)) = a. Then a = N(a,) € pre( P)\ P and hence ' = za, €
N (i'g]\])*l(pre(lﬁ)). The necessary properties of 2’ for the induction step can
telN
now be shown as in case 1 of Proposition 1.

Case 2: (Z(y),a,9) € A
Then Z(y) > 14, g = Z(y) + 1, — 14, 6(g,a) = p and it exists b € ¥ such that
0(p,b) is defined . Since Z(y) > 14 1t ex1sts s € IN such that 6(qgo, A(N(2))) = ¢q
and 7N(z) ¢ PU{e}. Let a, € 3, with A(7N(a,)) = a. Since (g,a) = p and it
exists b € ¥ such that (p, ) is defined, it holds N(za,) € pre(P) \ (P U {e}).

Therewith 2’ = zd, € () (F&)~ (pre(P)) and as in case 2 of Proposition 1 the
teN
necessary properties of z’ for the induction step can be shown.
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Case 3: (Z(y),a,9) € A
Then Z(y) > 14, g = Z(y) — 1, and 6(q,a) € F. Since Z(y) > 1, it exists
s € IN such that &(go, A(FN(z))) = ¢ and 7N(z) ¢ P U {e}. Let a, € %,
with A(7N(a@,)) = a. 6(q,a) € F implies 7N(za,) € P and hence 2/ = za, €
N (78)=1(pre(P)). As in case 3 of Proposition 1 the necessary properties of
teN
2’ for the induction step can now be shown.

Case 4: (Z(y),a,9) € A )
Then 6(qo,a) € F. Let s € N with 78 (x) = € and a, € X, with A(7N(a,)) = a.

§(qo,a) € F implies 7N(as) € P and hence 2’ = zas € () ()~ (pre(P)). As
teN

in case 4 of Proposition 1 the necessary properties of =’ for the induction step
can now be shown, which completes the proof of Proposition 2.

From Propositions 1 and 2 follows L(A") = P"“. This completes the proof of
Theorem 3. O

5. DETERMINISM IN SHUFFLE AUTOMATA

Related to the automaton A" we introduced another form of structured represen-
tations that we will now refer to as structured A-representations. For P C ¥t is
was mentioned that A P — P is a bijection.

Therefore P = @N[tQN(Tt]N)_l(P U{eph] = (Ao (:)N)[tgm(f’gl\l)_l(p U{e})]

~ IN ~ N 1A .
For z € ¥* let SR p o) (w) == (Ao oM~1(x)n [tDN(TgN) LPuU{e})]. Tt is the
set of all structured A-representations of x.

It is easy to see that the mapping a; +— a; for ¢ € T defines a bijection from
~ N
SR pugey) () onto SR](NPU{E})(l‘).

Regarding pre(SAR](NpU{E})(:U)) and pre(SR](NPU{E})(x)) the relation above defines

a mapping that is surjective but not necessarily injective.

Let e.g. P = {ab,abc}, then a1b; € SR](NpU{E})(ab) C pre(SR](NpU{E})(ab)) and
aby € pre(SR](NpU{E})(ab)) that are both mapped to aijb; € SR](NPU{E})(ab) C
pre(é’]i’)(l\lpU (e} (@b)) by the mapping above.

In Theorem 3 a relation between the elements of pre(SAR](NpU (e} (®)) and the paths
in A" was established. Let therefore SAR](NpU{E}) = GLIJM SR](NpU{E})(x).

A AN
Then Ao OV : pre(SR pyyey)) — (pre(P))™ is a surjective mapping. The construc-
tion in (22a) defines a mapping ¥ : pre(SR](NpU{s})) — A with € o ¥ = Ao ©ON, and
o
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~ N . :
pre(SRpyiep) A C (A™M)* (paths in A™)

(O re(p))

Definition 7. AY is called deterministic on w € (pre(P))Y, iff #(a~1(x)) =1 for
each x € pre(w). In that case, we consider a~1(x) as an element of A instead of a
subset of A.

Theorem 3 provides a relation between the states of the shuffle automaton A"
and the structured A-representations. With an additional determinism condition
the following theorem provides an analog relation for structured representations.

Theorem 4. Let A™ be deterministic on w € (pre(P))™, S a countable index set
and w" € SR;TG(P)(UJ), then

Zla~ (w)](q) = #({s € S | (g0, 75 (w")) = ¢ and 7} (w") ¢ PU{e}})
for each g € Q, (23a)

and

y ¢ P foreachy € pre(ro(w”)) \ {7°(w")} C pre(P) andt € S. (23b)

Proof. (23a):
Since A" is deterministic on w, according to (22a)
Zloa Y (w)](q) = #{t € N | §(qo, A(FN(2"))) = q and 7N(2’) ¢ P U {e}}) for each
g € Q and each 2’ € () (#]N)~(pre(P)) with w = A(ON(z)).
telN

We now extend the homomorphisms A : 3* — X* defined in the proof of Theo-
rem 3 to a homomorphisms A : (£ U Sy)* — (£ U Sn)* such that the mapping
as — ag for ag € Xy and s € IN is included.

- A N )
So the restriction /\\pre(sﬁ%ﬂqpu{m) cpre(SR pugey) — pre(S’R](NPU{E})) is the map-

~ N
ping introduced in the context of defining SR pyy.y) which is surjective but not

necessarily injective. With this definition we now have AER (") = TN (A(2")) for
each 2/ € () (7))~ (pre(P)) and t € IN. For such 2’ and ¢ holds 7N (2') = ¢ &
teN

TN(A(z")) = & and 7N(z') € P = 7N(A(2')) € P, but not necessarily the reverse
implication.

If 7N(A(z')) € P and #8(z') ¢ P for a t € IN, then 7 (2') = a; and 7N (A(z')) =
a; with a; € ¥; or 7N(2') = 4,6, and 7} (/\( ) = /\( t)ar with a; € ¥; and
iy € B0
So 2’ can be decomposed into =’ = vya;vs respectively ' = via,ve with v2 € E]}\{t}.
Because a; € P respectively A(d;)a; € P, via; respectively via; as well as v1ay Te-
spectively via; are prefixes of structured A-representations with /\((:)]N(vldt)) =
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AON(v1d,)) € pre(w) respectively A(ON(v1d)) = A(ON(v1a,)) € pre(w). How-
ever X(v1a;) # X(viay) respectively x(vidy) # X(v1a;), which contradicts the de-
terminism of A" on w.

Therefore the implication 7N (A(z)) € P = #N(2') € P holds, and so
Zla~'(w)](a) = #({t € N | (a0, F(A)) = ¢ and NAE) ¢ P U {e}}) for
each g € Q.

Because for each w' € Sngre(P) = pre(SR](NPU{E})) = tQN(TF)*l(pre(P)) there

exists z’ € pre(SAR](NpU{E})) = N (M)~ (pre(P)) with w’ = A(z'), it holds
teN

Zlo~H(w)](q) = #({t € N | d(qo, 7 (w')) = q and 7 (w') ¢ P U {e}}) for each
g€ Qand w € SRgre(P) (w').

Let now ¢ : S — IN be a bijection.

According to Lemma 4 v, : SRSre(P) (w) — SR]Sre(P) (w) is an isomorphism with
TL]IEIS) ov, = 77 for each s € S. For w” € SRSre(P)(w) let now w' = v, (w") €
SRgre(P) (w) and hence T}Fs) (w') = 75 (w").

From this it follows that {t € N | §(go, ™ (w')) = ¢ and 7N (w') ¢ P U {e}} =
{u(s) € N | 8(qo, 7%, () = g and 7, (w) ¢ PU{e}} = {s € S | 8(go, 5 (w")) = g
and 7%(w”) ¢ P U {e}}, which proves (23a).

(23b):

If 7%(w") = &, then the proposition holds because pre(e) \ {¢} = 0. Therefore let

2 (w'") #e.

Because of the assumption € ¢ P, the proposition holds for y = ¢. Therefore let

y # €. As in the proof of (23a), it is sufficient to prove the proposition for S = IN.

As in the proof of (23a), there exists 2’ € () (7¥) ~!(pre(P)) such that w” = A(z)
telN

and 7N (w") = A(7N(2")). Furthermore there exists 3’ € pre(7N(z')) \ {e, 7™ (')}
and y = A(y'). Hence ¢y = a; with a; € ¥4 or ' = Gyay with ay € ¥y and 4y € f]tZz‘
As in the proof of (23a), the assumption y € P now contradicts the determinism
of A* on w. O

6. SUFFICIENT CONDITION FOR SELF-SIMILARITY

Theorem 4 together with the remarks following Lemma 5 contribute considerably
to a sufficient condition for (14). Therefore the following definition is reasonable.

Definition 8. A prefiz-closed language L C %* is based deterministically on a
phase P C X% w.r.t. P, if L is based on P and the deterministic automaton P
accepts P, so that P is deterministic on each w € L C (pre(P))™.

If L is accepted by a deterministic automaton L, then L is based deterministically
on P w.r.t. P, iff L is based on P and the product automaton [Sakarovitch 2009]
of L and P is deterministic.

We now continue the remarks following Lemma 5. Additionally we assume that
SF C ®* is based deterministically on PF C ®* w.r.t. PF. At this, let PF be
a deterministic automaton accepting PF, so that PF" is deterministic on each
ue SF.
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Now by Theorem 4 Z[a~!(u)] formally and unambiguously describes “how a
cooperation partner is involved in several phases”.

Furthermore, let ) # K’ C K and let K be finite.

For ¢¥(w) € SF and y € SRpre PF)(goK (w)) according to Theorem 4 we have

Z G = #((0) < K x N | oo 750) = g and 7510) ¢
PF U {e}}) for each g € Q. If additionally % (¢%,(w)) € SF, then by (21)
i< (y) € SRpre(PF)( K' (X, (w))), and also according to Theorem 4 it holds

2 (@ (2R (w))(@) =#({(s,1) € K x N | 8(qo, 75 NN W) = ¢

and TSN (7N () ¢ PFU{e})

—#({(s,t) € K" x N | 890, 7N () = ¢

and 755N (y) ¢ PF U {}})

<Zla™H (" (w))](q) for each g € Q.

(24)
Now let way, € [ ) (X)~HSF)] N (pK)"L(SF) C ®% with aj, € &), and k € K.
seK
According to (20) there exists y' € SR{)(rXe]FPF)( K (way,)) such that way = OK*N(y).

This implies
Y = yak,,) with y € SRgrz]g\IPF)(cﬁK(w)) as well as a(; n) € P(k,n) with n € IN.
(25)

Therewith holds T(Iéf)])N(y) = T(I,:fl) (y)a € pre(PF) and a = T(I,gfl])N( (k) €

®. If therefore a ¢ pre(PF), then this implies T(I,gfl]N( ) # € and T(};i])N(y) €

pre(T, ([,:fl]N( N\ {TI},:Z])N y')}. Since ¢ (way) € SF and according to the hypothe-
sis that PFY is deterministic on ¢* (way,), as well as according to (23b) it holds
e £ 7ION(y) ¢ PR (26)

Now (24) and (26) provide the formal base for a sufficient condition for (14).

Let PF = (®,Q, 9, qo, F') be a deterministic automaton that accepts PF and let
SF = (®,Qsr,dsF, ¢sro) be a deterministic automaton that accepts SF. If SF' is
deterministically based on PF w.r.t. PF, then holds

Theorem 5. If for each (qsr, f) € QsF X ]NOQ and (¢sp, ') € Qsr ><]N0Q for which
exists u,uw' € SFN (pre(PF))" such that gsr = d0sr(gsro,u), ¢sp = dsr(qsro, v),
f=2Zla ()], f' = Z[la"* ()] and for which f > f' the following holds:

{a € DN pre(PF) | dsr(qsr,a) is defined }
C{a€®nNpre(PF) | dsr(qsp,a) is defined } (27a)

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations . 23

and for each q € Q with f'(q) > 0 is

{a € ®\ pre(PF) | 6(¢q,a) and d0sr(qsr,a) are defined }
C {a € ®\ pre(PF) | §(q,a) and dsr(qsp,a) are defined } (27Db)

then follows

GIAN (@) USSP N (@) HSF)] € ()71 (SF) for all 0 # K’ C K.

seK
Proof. We show ¢k, (v) € (¢%')~1(SF) by induction on v € [ () (gX)"1(SF)] N
seEK
(E)"YSF) C @4, as [ (@X)H(SF)] N (%) ~1(SF) is prefix closed.

seK
Induction base. For v =& holds ¢, (v) = ¢ € (')~ 1(SF).
Induction step.
Let v = way, with a € ®; and k € K, then w € [ ) (X)L (SF)] N (¢¥)~1(SF),

seEK
and by induction hypothesis ¢, (w) € (a5 )~ (SF).
Case 1: k ¢ K’
Then ¢/ (v) = ¢f (w) € (§™) 7 (SF).
Case 2: k€ K’
¢%(w) € SF because of w € [ ) (X)"L(SF)] N (p¥)~1(SF).
seK

According to (25) there exists y € SRpre( P F)(gBK (w)) and according to induc-
tion hypothesis ' (¢E, (w)) € SF.

From (24) and (21) it follows Z]a~ (g™ (3K, (w)))] < Z[a~ (@ (w))] and
N () € SR&&HEF)@K (P, (w)))-

Let now u := @' (w) and v’ := @& (P%, (w)), then v € SF and «' € SF. The
existence of y € SRII)(re](NPF)( K(w)) and ITE XM (y) € SRpI‘e(PF)( (@K, (w)))
implies u € (pre(PF))* and v’ € (pre(PF))"

Let now additionally gsr := dsr(gsro, v), ¢sp = 0sr(gsro,u'), f = Zla=(u)]
and f’:= Z[a~(u')], then f > f'.
ve [N () SE)IN(@"™) "1 (SF) implies g (v) € SF and o (v) = §* (w)a

seK
with a € ®. So dsr(gsr,a) is defined.

k e K’ implies ¢K, (v) = ¢, (w)ay, and so @& (3K, (v)) = % (%, (w))a.

To complete the induction step it remains to prove, that dsr(¢sp, @) is defined.
For case 2.1: a € ® Npre(PF) this follows from the precondition (27a).

For case 2.2: a € @\ pre(PF), it follows according to (26) that there exists n €
N with € # TIETL])N( ) ¢ PF. Since lefl])N(y)a € pre(PF) (25) it exists ¢ € Q

such that &(qo, T, Ilgfl])N(y)) = ¢q and 0(q, a) is defined. Because of (24) for this ¢

holds f/(q) = Z[o~ ("' (&1 ()))](a) = #({(s.1) € K'xIN | (g0, 7N (w)) =
g and TKX]N( ) ¢ PFU{e}}) > 1. From precondition (27b) it follows that
dsr(dsp,a ) is defined, which completes the proof of Theorem 5.

O
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Corollary 1. If all prerequisites of Theorem & and additionally those with respect
to SG and PG are fulfilled, then LK., (Lix) = Ly for I' x K' C I x K.

The hypotheses for Theorem 5 can be checked at the product automaton of SF
and PFY, if it is finite. If PF and SF are finite automata, then the reachable part
of the product automaton can be constructed step by step (reachability analysis).
If the product automaton is finite, this procedure terminates. Therefore finiteness
of the product automaton can be verified by a semi-algorithm.

7. CONCLUSIONS AND FUTURE WORK

The main result of this paper is a sufficient condition for self-similarity of uniformly
parameterised cooperations. Under certain regularity restrictions this condition can
be verified by a semi-algorithm.

It is well known that dynamic system properties are divided into safety and live-
ness properties [Alpern and Schneider 1985]. Safety properties can be formalised
by prefix closed languages. For abstractions defined by alphabetic language ho-
momorphisms it is easy to see that an abstract system satisfies a safety property
iff the concrete system satisfies a corresponding safety property. So our notion of
self-similarity is compatible with safety properties.

Concerning liveness properties this does not hold in general. In [Nitsche and
Ochsenschliager 1996] a property of homomorphisms is given that implies a similar
relation between liveness properties of an abstract and a concrete system w.r.t. a
modified satisfyability notion. Based on that framework we will investigate liveness
aspects of uniformly parameterised cooperations in a forthcoming paper. Another
topic of interest is the generalisation of this paper to n-sided cooperations.
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