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Executive Summary  

The main goal of the present architecture document is to depict a global view of the MASSIF system 

and of the solution it intends to achieve. This document is primarily for external users to understand 

how the MASSIF solution is structured and how its components work together. Therefore the 

document provides a rather high-level description of different elements (structural layers, components 

and functionalities). Nevertheless, for complete information, we strongly recommend the reading of 

official MASSIF project deliverables found in the project website (http://www.massif-project.eu/). 

Consortium developers may also be interested in this documentation to understand the relationships 

and dependencies among components within an integrated framework. 

 

MASSIF Architecture Overview 

The MASSIF architecture is represented through several views that convey different perspectives, 

levels of abstraction and needs. Yet a technical approach has been considered for all of them. The 

MASSIF architecture is intended to be as general as possible and does not address any particular 

scenario or use-case that could add specific constraints to the common solution. Thus it is worth 

pointing out that not every single component is subject to be adapted to each considered scenario, but 

we will have different instantiations of the general architecture depending on the given characteristics 

of the scenario. Furthermore, the MASSIF architecture, which is open, is intended to be powerful and 

generic enough to allow future system integrations, and support different use-cases from the ones 

foreseen in this project, by third parties. 

The MASSIF architecture document provides an integrated view of the project, cross-cutting the 

different activities. In order to give the reader a perspective on the correspondence between 

components and activities, such mappings onto the concrete project activities can be found at the end 

of this document in the annexes section. 

A diagnosis of the shortcomings of current Security Information Event Management (SIEM) systems, 

which led in part to the proposal of the MASSIF architecture, can be described succinctly by the 

following: inability of encompassing ICT infrastructures with global deployment, since they normally 

consider events from single organizations; incapability of providing a high degree of trustworthiness 

or resilience in event collection, dissemination and processing, thus becoming susceptible to attacks on 

the SIEM systems themselves; insufficient correlation and lack of countermeasure capabilities; 

centralized rule processing, making scalability difficult by creating bottlenecks and single points of 

failure. 

Addressing these problems implies a set of functional, as well as non-functional requirements, to be 

met by the MASSIF architecture. Some functional requirements bring about innovative functionality 

compared with existing SIEM. On the other hand, satisfying non-functional requirements such as 

resilience, understood as the capacity to maintain acceptable levels of security and dependability in 

harsh operating conditions, is considered by MASSIF a key asset of critical SIEM systems, given the 

current and expected severity of advanced persistent threats or targeted attacks. Satisfying those 

attributes and requirements implies meeting a set of key objectives: 

- Scalable data acquisition and collection of huge amounts of events from diverse and 

geographically spread nodes. 

- Distributed and near real-time aggregation, dissemination and processing of events; alert 

generation and incident notification; countermeasure propagation. 

- Scalability and elasticity of correlation, across integrated and distributed engine implementation 

alternatives. 
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- Clear decoupling between the target (monitored) and SIEM (monitoring) system, for minimal 

impact on the observed infrastructure, and adaptation to varying target/SIEM system 

combinations. 

- Resilient operation of the above against faults and attacks of incremental severity, maintaining 

availability, integrity and confidentiality. 

When reflecting about key non-functional aspects of the MASSIF SIEM architecture, such as 

scalability, versatility and resilience, one has to take into account: 

- Different interaction realms, such as: multiple and (mainly) unprotected edge facilities; hostile 

large-scale communication environment; more protected, centralised or decentralised core 

facilities.  

- Distinct levels of risk accepted for different instantiations of the architecture in various scenarios, 

leading to different levels of resilience as a trade-off for cost and complexity.  

- The difficult combination of characteristics such as: security, timeliness, multi-tenancy.  

 

MASSIF Architecture Components 

The MASSIF architecture intends to address the aforementioned objectives. The MASSIF SIEM 

system is structured as an infrastructural overlay of the monitored payload system. The overlay is 

implemented by devices which provide the hooks to the monitored system, MASSIF Information 

Switches (MIS), whilst they themselves serve as nodes of the overlay. The MASSIF SIEM 

architecture features several layers: Data layer, Event layer, Application layer. 

 

 

The main purpose of the MASSIF Data layer services is to deliver security information flows up to the 

MASSIF core, as indicated by the thick arrow. In order to do so, this layer must provide the 

functionalities for the collection, aggregation and normalization of the events generated by the payload 

machinery and use the services offered by the MASSIF resilient infrastructure to provide the relevant 

security data to MASSIF applications.  

The Event layer is provided by a generic events dissemination service, implemented by the Resilient 

Event Bus (REB), supported on a dedicated communication service resilient to faults and attacks. The 

communication service is implemented by protocols running amongst the MIS. The REB performs 
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generic event dissemination towards the services in the core-side of the infrastructure, namely the 

event processing engine. 

The Application layer features several key services. Processing of events in the MASSIF SIEM is 

performed by a highly-scalable, elastic correlation engine. The latter is materialized as a parallel 

Complex Event Processing (CEP) system. Security monitoring in MASSIF SIEM is supported by the 

Predictive Security Analyser (PSA), which performs multi-level predictive security monitoring. The 

Attack Modeling and Security Evaluation Component (AMSEC) is intended to complement the direct 

analysis functionality of the SIEM system, by providing the architecture with the capability of attack 

modeling and security evaluation. The Decision Support and Reaction (DS&R) component provides 

an administrative tool based on the OrBAC model, which allows to consolidate the security policy 

through the different infrastructure’s components in an organization, and to configure automatically 

those components, enforcing the countermeasures to be applied (as indicated by the fine arrow).  

These services are helped by a generic visualisation service and a repository service. The purpose of 

the visualisation component is to provide a convenient and effective GUI for the interaction with 

MASSIF SIEM components. The common MASSIF repository provides cross-layer information 

integration from different components of the MASSIF SIEM.  

 

MASSIF Architecture Resilience 

Several mechanisms support the seamless integration of resilience into the distributed MASSIF SIEM 

system, with the aim of ensuring several levels of security and dependability in an open, modular and 

versatile way. The solutions proposed were essentially inspired by two main issues of the current 

SIEM arena:  

• the monitored environments are increasingly exposed to threats, and more prone to 

different sorts of failures;  

• dependence on the monitoring systems to ensure secure and dependable operation of the 

monitored systems in real-time is increasing dramatically.  

For example, in MASSIF we discuss techniques to improve the resilience of specific nodes of the 

architecture, such as the MASSIF Information Switches (MIS). The MIS can be built with incremental 

levels of resilience, depending on its criticality, from baseline ruggedised simplex machines, up to 

physically replicated Byzantine resilient units. Recall that we leave the monitored system essentially 

untouched, and base our resilience solutions on the overlay, of which the MIS are key points. 

The communication among the MIS plays a fundamental role in the MASSIF resilience architecture. 

This feature is responsible for delivering events from the edge services to the core SIEM correlation 

engine despite the threats affecting the underlying communication network. The Resilient Event Bus is 

an overlay communication subsystem internal to the MASSIF SIEM and thus itself protected, much in 

the sense that secure VPN (virtual private networks) are. To give this kind of guarantee we will 

employ application-level routing strategies among the MIS nodes, in such a way that they form an 

overlay network able to deliver messages in a secure and timely way.  

The MASSIF architecture allows for multiple strategies for protection of the core components 

executing application layer services. The simplest one is perimeter defence, by isolating the core 

components within trusted intranets, only communicating with the outside through a MIS, in two 

ways: with the Resilient Event Bus; and with auxiliary systems. Besides executing protection 

functions, the core-MIS is itself built with resilience enhancing mechanisms, to protect it from direct 

attacks. Besides this baseline protection, SIEM core resilience can be enhanced through more 

sophisticated forms of protection, through fault and intrusion tolerance. Such solutions would for 

example provide resilience against insider attacks.  
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The publish-subscribe nature of the Resilient Event Bus communication model extends the modularity 

of the edge subsystems to the core systems: application servers may actually reside in more than one 

protected intranet, offering a multitude of deployment and server placement strategies.  

The storage solutions to be deployed in the MASSIF architecture have several purposes, requiring 

different levels of resilience. Amongst them, MASSIF foresees storage units dedicated to archival of 

critical security information and events, requiring properties like integrity, confidentiality and 

unforgeability. One of the obvious uses of such resilient storage is to archive important security 

information and events in a way justifiably usable for criminal/civil prosecution of attackers after a 

security breach.  

MASSIF Architecture vs. existing systems 

Security Information and Event management systems have existed for about ten years. Even though 

they still can be improved, they are being commercially successful today, which shows that designing 

an entirely new SIEM system from the ground up would be an enormous effort for little benefit. 

Instead, the MASSIF project has chosen to partner with vendors of two prominent open source SIEM, 

OSSIM and Prelude
1
, to complement them with enhanced MASSIF functionality whilst reusing 

existing functions provided by these SIEM implementations. The open-source choice (even though we 

are also looking at commercial SIEM environments) has been made because it eases analysis and 

integration.  

 

                                                      
1
 Websites of these products: http://communities.alienvault.com/community; http://www.prelude-

technologies.com/en/welcome/index.html. 
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1. Introduction and Scope 

1.1 Roadmap 

The present document introduces the MASSIF architecture. This document is established in the frame 

of MASSIF project but is not related to a specific activity, work package or task. In fact it does not 

appear as contractual document of the Annex I of the project. This document is organized as follows: 

- The “Introduction and Scope” section provides the roadmap, purpose and document overview. It 

also establishes the premises and considerations to build the MASSIF system. 

- The “General Overview” section introduces the main architectural blocks and services offered per 

block. 

- The “Structural View” section provides a macroscopic view of the topology and of the main 

components encapsulating the system functions. 

- The “Functional View” section introduces the system decomposition into the different major 

components. For each component an explanation of its organisation, function, operation and 

interaction with other components is given. 

- The “Resilience Mechanisms” section focuses on a core non-functional aspect, presenting the 

MASSIF resilient framework architecture, revealing the most important aspects on resilience that 

will be taken into account in the final solution. 

- Finally, the “MASSIF Architecture vs. Existing Systems” section presents a comparison between 

MASSIF architecture and the elements that can be found in existing SIEM solutions, namely 

OSSIM (Open Source Security Information Management) and Prelude, the exemplary systems 

within MASSIF project. 

The figure below shows the roadmap for MASSIF architecture, developments and integration tasks. 

This indicates what have been done up to the delivery date of the architecture (marked by a vertical 

brown line) and what is still left. At the date of submission, there will be some design deliverables 

pending that could have an impact on the current architectural design. Therefore this document cannot 

be considered as a final version. Additionally, the integration task may require additional changes of 

the document. If applicable, these changes will be performed when needed. 

 

Figure 1 - Roadmap 
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1.2 Rationale 

The main goal of the present architecture is to depict a global view of the MASSIF system and of the 

solution it intends to achieve. This document serves two purposes. 

Firstly, consortium developers will be interested in this documentation to understand the relationships 

and dependencies among components within an integrated framework. Such an architecture document 

is important for ensuring that partners share a common vision of the production of the project, know 

where and with whom they should be prepared to integrate and test, and what interfaces and 

information they are consuming, producing and offering. Furthermore, the present document will 

serve as a guide for the future tasks of integration, tool adaptation and evaluation. 

Secondly, it is intended for an external audience, to explain how the MASSIF solution is structured 

and how its components work together, providing a high-level description of different elements 

(structural layers, components and functionalities). Furthermore, for complete information, this 

document is complemented by the official MASSIF project deliverables found in the project website 

(http://www.massif-project.eu/). . 

The MASSIF architecture is represented through several views that convey different perspectives, 

levels of abstraction and needs. Yet a technical approach has been considered for all of them.  

The MASSIF architecture is intended to be as general as possible and does not address any particular 

scenario or use-case that could add specific constraints to the common solution. Thus it is worth 

pointing out that not every single component is subject to be adapted to each considered scenario, but 

we will have different instantiations of the general architecture depending on the given characteristics 

of the scenario. Furthermore, the MASSIF architecture, which is open, is intended to be powerful and 

generic enough to allow future system integrations, and support different use-cases from the ones 

foreseen in this project, by third parties. 

The MASSIF architecture document provides an integrated view of the project, cross-cutting the 

different activities. In order to give the reader a perspective on the correspondence between 

components and activities, such mappings onto the concrete project activities can be found at the end 

of this document in the annexes section. 

1.3 Understanding the Functional Requirements 

Guidelines for the MASSIF framework (and future SIEMs) were developed in [27] , which established 

a set of functional, as well as non-functional requirements, to be met by the MASSIF architecture. 

Their analysis serves as a guide to the architectural decisions followed. In this section, we start by 

understanding the functional requirements: 

- The MASSIF system must interface the monitored system. The MASSIF system and the 

monitored system will exchange information between each other. There will be an upstream of 

security information (events) consisting of both events pushed by the monitored system to the 

MASSIF Security Information Event Management (SIEM) and events requested by the MASSIF 

SIEM platform from the monitored system. In addition there will be a downstream consisting of 

commands and countermeasures from the MASSIF SIEM to the monitored system that would 

describe modifications of the monitored system. However the monitored system should be left as 

undisturbed as possible, or at least the capabilities required by the MASSIF SIEM system in terms 

of monitoring and countermeasures should be fixed and acceptable to the business system owners. 

- The MASSIF system must be able to collect security data (events) generated by different kinds of 

probes at both the network and the services layer of the monitored system. These probes can be 

highly distributed in the monitored system. Since there are many different formats of collected 
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data (events), these must be translated into an internal format (the MASSIF format) independently 

of the source format. 

- Similar events should be aggregated in a single event. Conditional filters (ruled-based) should be 

able to be applied to different stages of the event collection phase. Standardized event attributes 

should be used in conditional constructions used for filtering, action triggers, correlation and 

reporting. 

- Any event should include a common trusted timestamp reference independently of the security 

probe. 

- The MASSIF system should inform an appropriate user about possible attacks or abnormal 

behaviors. Advanced event processing should be able to filter out unwanted events and generate 

alerts on key issues. The alerts should be prioritized to support the decision-taking. 

- The system should rely on simulation of attacks and countermeasures to evaluate their possible 

impact at the operational level. 

- The system should be able to select automatically the most suitable remedial actions. The selected 

countermeasures should be transformed into commands applicable to the selected components and 

tools. The system should be capable of applying certain countermeasures automatically to protect 

assets. 

- MASSIF should be able to predict security threats before the occurrence of possible security 

incidents, and detect close future violations of security monitoring rules. 

- MASSIF system monitoring should be compliant with security policies, rules, models and metrics 

defined beforehand by an authorized user. The system should be flexible enough to express a wide 

variety of rules and deploy them over a likely distributed environment.  

- Security directives, rules and models should be introduced or modified in an easy and dynamic 

way. Users can interact with MASSIF components through a Graphical User Interface (GUI). No 

information should be lost during the change and internal processes should not be affected during 

the change.  New security policies, rules, models and metrics must be able to be added without 

interrupting the service. 

- The system must be able to display in a management GUI (Graphical User Interface) an overview 

of all security events that constitute security incidents of interest in real time (the correlated events 

and alerts). 

- The system must be able to show in a management GUI the list of the original basic events that 

triggered the correlation rule and generated the security incident. 

- The system must be able to detect the compromise of the event data integrity, either in transit or in 

storage, and to indicate this in a management GUI. 

- MASSIF components must assure that for internal events (failures detected, user accesses or any 

configuration change) in the system a log is produced and stored for internal audit. 

- The security information must be stored at different stages of the information management (raw 

data, normalized). The system must apply the least persistence principle: it stores only the 

information needed to forensic analysis, historical and trend evaluations, recovery actions and 

statistics. The received security events should be able to be indexed, compressed and archived. 

The search engine should be available to easily access to stored events. 

- The system must support data access isolation. The system must allow the management of 

different roles and identities (authentication). Only specific operators may be authorized to 

perform certain operations, after a proper authorization procedure. The events or the data reported 

or generated by the management and control system components (i.e. the measurements 

parameters) should not be seen by unauthorized persons. Data records containing information 
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related to security breaches must be available only to authorized parties, based on existing and 

upcoming policies. 

- Users’ actions in the system must be logged. The logs must be stored and kept for a certain period 

of time (depending on the country’s local regulation and attending to the company’s records and 

Information Management procedures) on a secured and dedicated log-service platform. 

1.4 Understanding the Non-Functional Requirements 

In this section, we review and understand the non-functional requirements laid down in [27] , that is, 

those related to, e.g., performance, scalability and mainly, resilience, understood as the capacity to 

maintain acceptable levels of security and dependability in harsh operating conditions: 

- The system should be flexible enough to integrate a growing number of devices or probes 

deployed in the architecture, to operate through diverse administrative domains, maintaining its 

performance and timeliness capabilities. Namely: 

• at the collection point, the system must be able to handle data peaks; this is, collect data at 

the highest rate the probes can produce and maintain the performance capabilities; 

• collection, aggregation, normalization, prioritization and correlation of security data 

(events) must be performed in (near) real-time. 

• archival should be capable of storing and retrieving generated events in a scalable way. 

- The system must ensure a reliable flow of information upstream and downstream, as well as 

storage, generically preserving integrity and confidentiality, namely: 

• event flow protection, from the collection points through their distribution, processing and 

archival, maintaining ordering; 

• authenticated and unforgeable component status reporting;  

• authenticated, unforgeable and non-repudiable (auditable) internal event log production 

and storage; 

• timely and orderly generation of alarms and countermeasures when needed. 

- The system should maintain availability and integrity in face of the occurrence of accidental faults 

and of isolated attacks, namely through: 

• appropriate mechanisms like redundancy and cryptographic protection; 

• flexible and incremental solutions for node resilience, providing for seamless deployment 

of necessary functions and protocols.  

- In case of severe fault/attack patterns, such as multiple component failures and/or unpredictable 

network operation conditions, the whole SIEM infrastructure should achieve high resilience. 

Namely: 

• data generated by the monitoring devices and tools (sensor data) must keep feeding the 

core machinery with acceptable quality vis-avis normal attack/fault situations; 

• likewise, in such harsh conditions the system must possess the necessary reconfiguration 

ability in order to preserve its crutial functions; 

• if necessary, both in communication and processing, activities and information flows may 

be resourced by order of criticality, specially the generation of alarms and 

countermeasures. 
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We propose to address these requirements by an architecture structure as described below, having the 

following main characteristics: 

- A topology following the WAN-of-LANs model [17] , and laid down as a logical overlay over the 

target system, so as to preserve legacy but allow seamless integration of the monitoring and 

monitored systems, possibly across different and wide-scale administrative domains.  

- Modular and adaptive structure, achieved by: (i) using modular functions and protocols, to be re-

used by different instantiations of the architecture; (ii) concentrating all functions in configurable 

conceptual devices which act as the nodes of the overlay: MASSIF Information Switches (MIS). 

The MIS are usually hardware implemented, however there can be software based 

implementations, called MASSIF Information Agents (MIA). MIS/MIA construct the MASSIF 

architecture “LEGO” in symbiosis with the monitored system. 

- Information flow in the overlay implemented as a secure and real-time event bus, modelled 

essentially as a producer-consumer SCADA-like (Supervisory Control and Data Acquisition are 

distributed systems used in physical infrastructures, often large-scale, e.g., electrical grids, which, 

as the name implies, acquire data from all the infrastructure, to feed a real-time dynamic image of 

its state, and sometimes produce control decisions, which are materialized by commands back 

down) system upstream, with low-bandwidth commands downstream.  

- Resilience procurement based on: securing the information flow; making the dissemination 

infrastructure itself (event bus) resilient; protecting crucial processing units (MIS, MIA) with 

incremental resilience strategies relying on hardware and software based alternatives; and 

differentiating between edge-side and core-side configurations.  
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2. General Overview  

2.1 Main Architectural Features 

This section presents the architecture. It begins by introducing the key options of the architecture and 

the system model, in the context, when appropriate, of the requirements laid down in the 

Understanding of Requirements sections (1.3 and 1.4). Next, the architecture block diagram and 

several service categories are succinctly presented, to be detailed further ahead in the document. 

The main desirable characteristics of the SIEM architecture are laid down so as to fulfil the set of 

requirements, both functional and non-functional, outlined earlier. They can be summarized into a few 

key objectives: 

- Scalable data acquisition and collection of huge amounts of events from diverse and 

geographically spread nodes. 

- Distributed and near real-time aggregation, dissemination and processing of events; alert 

generation and incident notification; countermeasure propagation. 

- Cross-layer correlation and  predictive security monitoring capabilities, 

- Integrated and distributed correlation engine implementation alternatives. 

- Clear decoupling between the target and SIEM system, for minimal impact on the observed 

infrastructure, and adaptation to varying target/SIEM system combinations. 

- Resilient operation of the above against faults and attacks of incremental severity, maintaining 

availability, integrity and confidentiality. 

When reflecting about key non-functional aspects of the MASSIF SIEM architecture, such as 

scalability, versatility and resilience, one has to take into account: 

- Different interaction realms, such as: multiple and (mainly) unprotected edge facilities; hostile 

large-scale communication environment; more protected, centralised or decentralised core 

facilities.  

- Distinct levels of risk accepted for different instantiations of the architecture in various scenarios, 

leading to different levels of resilience as a trade-off for cost and complexity.  

- The difficult combination of characteristics such as: security, timeliness, multi-tenancy.  

These considerations educated the organisation of the MASSIF architecture. 

2.2 System Model 

SIEM subsystems operate in heterogeneous and large-scale environments, with varying levels of 

exposure to attacks, and for which it is necessary to develop the right computational and resilience 

models that represent these characteristics. This is in contrast with settings in which the operational 

environment is more homogeneous, allowing a better (and simpler) understanding. The resilient SIEM 

architecture will necessarily encompass various nodes and devices, possibly connected through public 

networks, some of them operating at the edge of the system and performing data collection. We must 

consider that these edge nodes are typically less protected and that the communication environment 

might be untrusted. Other nodes, considered core nodes of the SIEM where data is processed, may be 

more protected. Nevertheless, they deserve a special care to ensure continuous operation (even if in a 

degraded mode).  
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Therefore, it is necessary to be aware that risk factors may vary and may not be easy to perceive 

accurately, requiring that uncertainty is reconciled with security and timeliness requirements. For 

example, the different grades of real-time needs, from edge to core, should be considered in the design 

of the mechanisms for ensuring continuity and integrity of information flows. Additionally, other 

mechanisms should be in place for detecting timing failures when timeliness enforcement is 

impossible. 

Given the simultaneous need for real-time, security and fault tolerance, this makes the problem of 

resilient SIEM operation hard vis-a-vis existing paradigms. Classical intrusion prevention techniques 

are certainly an important approach to deal with many threats. However, most defences are dedicated 

to generic attacks and will likely be unable to resist to new, previously unknown, targeted attacks. 

Therefore, we believe that there is the need for achieving fault and intrusion tolerance in addition to 

prevention. The design of solutions based on this paradigm can however only be accomplished with a 

good understanding of the fault and synchrony models that are more appropriate to each part of the 

architecture. 

2.2.1 Fault model 

The definition of the fault model is an important aspect upon which the system architecture is 

conceived, and component interactions are defined. The fault model conditions the correctness 

analysis, both in the value and time domains, and dictates crucial aspects of system configuration, such 

as the level of redundancy, the characteristics of the algorithms, and the placement and choice of 

components. Failure assumptions of a fault model can typically be organized in two classes: controlled 

and arbitrary failure assumptions. 

Controlled failure assumptions specify qualitative and quantitative bounds on component failures. This 

approach is extremely realistic, since it represents how common systems work under the presence of 

accidental faults, where they typically fail in a benign manner (e.g., by crashing), but occasionally 

could produce some erroneous value. However, in the presence of a hacker or a malicious person that 

is willing to disrupt the system, this approach is not recommended unless perhaps in parts where it can 

be enforced with very high probability (protected subsystems, use of trusted components, etc.). 

Arbitrary failure assumptions specify no qualitative or quantitative bounds on component failures. In 

this context, an arbitrary failure means the capability of affecting a value or a message, at any time, 

with whatever syntax and semantics (form and meaning), anywhere or in parts of in the system. 

Hybrid failure assumptions combine both kinds of failure assumptions. Generally, they can consist of 

allocating different assumptions to different subsets or components of the system. Hybrid models 

allow stronger assumptions to be made about parts of the system that can justifiably be assumed to 

exhibit fail-controlled behaviour, whilst other parts of the system are still allowed an arbitrary 

behaviour. For example, commodity computers with a Trusted Platform Module (TPM), can perform a 

limited set of operations in a secure way, even if the rest of the machine is compromised and 

controlled by an adversary. Alternatively, consider a computer with virtual machines, where the 

hacker can intrude the guest operating systems using normal exploit techniques, but the hypervisor can 

be kept correct because the attack surface is much smaller. 

Practical systems based on arbitrary or hybrid failure assumptions very often specify quantitative 

bounds on component failures, or at least equate tradeoffs between resilience of their solutions and the 

number of failures eventually produced. For instance, by employing cryptographic algorithms to 

protect the messages, it is possible to prevent attacks on the network that attempt to modify or generate 

new messages (because these messages will be recognized as faulty at the receiver, and therefore, will 

be discarded). Additionally, since it takes some effort and time to compromise a component, it is 

acceptable to assume that over a certain interval at most f components will be intruded by the 

adversary, opening the door for the so-called intrusion-tolerant protocols, or protocols which mask up 

to a given number of arbitrary failures. Note the power of these protocols: given the assumption that 

the hacker can compromise up to f components (f is a parameter, can take any value) during the 
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execution time, the protocol neutralises any intrusions, and plus does so in an automatic way. That is, 

we get rid of the stress of having to completely prevent intrusions: we allow up to f of them, whilst 

still preventing security failure, the ultimate goal. 

Given the highly distributed nature of SIEM systems, the fault model must consider the networking 

environments and the nodes, and must take into account the differentiated level of threats in distinct 

parts of the architecture. Therefore, in what follows we define the assumptions on the faults affecting 

the flow of information from sensors to the core SIEM systems. 

 Edge-side 

At the edge layer there will be sensing node devices that produce events (e.g., SYSLOG events), and 

then transmit them to event collectors, also at the edge. Devices are exposed to several kinds of 

attacks, and in the extreme case, they can be intruded by a hacker. The attacks can cause various forms 

of disruption, such as the deletion of specific events or complete removal of the logs, modification of 

event data (e.g., change some value) or creation of spurious events. However, although these problems 

can be severe, we assume the following of the edge-side components: 

- it is typically impossible for an adversary to have enough resources to compromise all devices at 

the same time; 

- therefore, the system will not fail as a whole, but only gradually – from a global perspective there 

will be partial failures leading to a increasingly degraded service, but mechanisms may be sought 

to reconfigure and recover the system from this problem; 

- with the right monitoring capabilities in place, it should be possible to detect such kind of faults 

through correlation at the core layer. 

The network that connects payload sensors to event collectors might also fail. This can occur either 

accidentally (omissions and/or crash failures), or due to attacks that tamper with the standard protocols 

conveying the information. In particular, the event flows can be interrupted or delayed (e.g., by 

controlling a router), and individual events can be for instance re-ordered, replayed, or forged. Once 

again, it is reasonable to assume that: 

- the adversary has limited power, and therefore, that he is only able to disrupt the networking 

environment in a partial way; 

- mechanisms can be deployed to detect such faults, which can be based on relevant sets of 

collected information allowing correlation and fault diagnosis (e.g., time stamps and their validity) 

or on structural protocol invariants that may be checked for correctness (e.g., a periodic event 

transmission did not arrive). 

Collector nodes, on which SIEM services and protocols are executed, might also be the target of 

intrusion and their operation might be disrupted. However, since these nodes are managed by the 

SIEM solution, we assume: 

- it is possible to deploy specific measures to protect the operation of collectors and make them 

resilient; in particular, depending on the value of the data being collected, distinct mechanisms can 

be implemented in order to achieve different levels of resilience (and typically also cost). 

Edge to core communications 

The networks through which events are transmitted to the processing nodes are prone to several kinds 

of failures. Depending on the configuration of the monitored system, the information might be sent 

through a local LAN, and therefore, it is easier to enforce a more controlled behaviour. For 

organizations with offices spread across a region, in most cases the communication has to be provided 

by some third party telecom operator, which has its own policies regarding for instance security. In 

both cases, the communications can fail accidentally due to the crash of some node or messages can be 
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lost because of network congestion. Attackers can also tamper with the SIEM protocols for conveying 

events between the edge and core nodes, causing for example the delay, re-order, or replay of 

messages. However, we assume that: 

- measures can be taken in the WAN part of the WAN-of-LANs infrastructure typical to the SIEM 

system, ensuring desirable properties of end-to-end communications, such as availability and near 

real-time, confidentiality and integrity; in particular, path redundancy and overlay, and 

cryptographic message protection. 

Core-side 

The core layer, which includes the processing engine that does correlation on the events and several 

other critical core services (see Section 4.3), is classically protected with some sort of devices (e.g., a 

firewall) aimed at preventing external attacks. However, under these circumstances, those devices can 

also become a target of attack, and most certainly will, within the scope of highly skilled targeted 

attacks as expected for critical IT systems and infrastructures – in fact, over the past years, several 

vulnerabilities have been described for the most commonly used firewalls [13] , [14] , [15] . This 

means that in order to ensure the safe operation of the core services, specific mechanisms will need to 

be developed to offer higher levels of resilience to attacks and also to control the in and out flows of 

information. We assume the following: 

- measures can be taken to ensure a seamless protected end-to-end flow of information from the 

protected edge nodes, to protected core nodes which also establish a resilient protection perimeter 

to the core services; 

- intrusion tolerance through redundancy and diversity may further avoid single points-of-failure in 

the presence of both faults and attacks, to selected critical core servers. 

Certain core services may require specific mechanisms to ensure correct operation even under 

improbable attack scenarios. For example, the historian is responsible for storing collected events and 

information in such a way that it can be presented and used in a court of law. In this case, although we 

have been considering perimeter defence for the core-side services, it may make sense to consider a 

scenario where an inside employee could try to disrupt the historian operation. In consequence, we 

assume that: 

- selected critical core server intrusion tolerance measures can be extended to enforce unforgeability 

and non-repudiation of information storage, in addition to classical strong authentication and 

access control policies. 

2.2.2 Synchrony model 

We briefly address the synchrony model, which refers to assumptions on time and timeliness.  

Traditionally, distributed systems have been developed by considering one of the two extreme models 

of synchrony. The asynchronous model, also called time-free model, does not make any time-related 

or timeliness assumption. On the other extreme, the synchronous model assumes that all system 

activities are executed within known temporal bounds, which includes local activities (process 

execution) and distributed ones (message transmission). However, many real systems are neither fully 

asynchronous nor fully synchronous. Therefore, there exist partially-synchronous and hybrid 

synchrony models to cover various intermediate cases, for instance assuming that there are reliable 

local clocks or that only some components are temporally predictable. 

The environments considered in MASSIF are heterogeneous in several aspects, also with respect to 

timeliness. Therefore, it will be wise to consider different synchrony models or different assumptions 

depending on the characteristics of the specific environments or networks. Next we discuss the 

appropriateness of the several models for MASSIF. 
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An extremely attractive aspect of the asynchronous model is its simplicity. Since no assumptions are 

made about the temporal behavior of the system, any activity can take as long as necessary without 

compromising correctness. This model would be thus appropriate for the parts of the infrastructure 

that are exposed to malicious attacks, which could disturb, delay or deny the execution of operations. 

In fact, protocols developed under the asynchronous model are immune to these attacks because they 

do not depend on any timeliness assumption and are always correct independently of real delays. 

On the other hand, the absence of time notions makes it impossible to satisfy temporal requirements or 

enforce some required levels of Quality of Service. To some extent, with asynchronous models there is 

a trade-off between safety and the ability to deal with Quality of Service (QoS) requirements. Finally, 

it is important to note that in the asynchronous model it is impossible to deterministically solve 

agreement problems, such as consensus or total order broadcast, in the presence of failures. 

The synchronous model lies on the other side of the synchrony spectrum, in opposition to the 

asynchronous model. In synchronous systems both communication delays and processing delays are 

known and bounded, the rate of drift of local clocks is also known and bounded, allowing clocks to be 

synchronized, performing synchronized actions, and time stamping distributed events. The 

synchronous model would seem to be the elected model for the MASSIF subsystems dealing with the 

above operations (e.g. near real-time event dissemination and processing). 

However, this model suffers from a major drawback, which is related to the lack of coverage of the 

synchrony assumptions, be it due to uncertain performance of parts of the system, or in the presence of 

time-based attacks, e.g. introducing artificial delays or changing clock or timestamp values, which can 

lead to temporal disruptions and ultimately to the violation of safety properties. In summary, 

considering the synchronous model when the infrastructure is unpredictable, unreliable or prone to 

attacks, is an impediment for achieving resilience and may compromise the correctness of the related 

SIEM subsystems.  

One approach to escape the problems encountered by developing solutions under the synchronous or 

asynchronous models is to consider partial or hybrid synchrony. These models essentially make 

additional assumptions that allow achieving some timeliness properties without falling into the 

problems caused by the lack of assumption coverage. Essentially, they build on the idea that 

synchrony is not a homogeneous property in the time or in the space domains, that is, that the 

infrastructure either becomes faster or slower during the execution and thus synchrony comes and goes 

(partial), or that some parts may be more predictable and synchronous than other parts (hybrid).  

One typical example of the partially-synchronous model assumes that there exist fixed upper bounds 

for the relative speeds among processes and for the message delivery delays, but that these bounds are 

not known a priori or they will only hold after an unknown time instant. Another well-know example, 

the timed asynchronous model, assumes an asynchronous model with the additional assumption that 

processes have access to a physical clock with a bounded rate of drift, making it possible to detect 

timing failures. One typical example of hybrid synchrony is the TCB model [16] , which assumes an 

asynchronous system enhanced with small synchronous components providing the necessary anchor to 

real-time. 

Hybrid Synchrony in MASSIF 

It looks like the adequate model for defining protocols in uncertain and attack-prone environments, 

with heterogeneous loci of synchrony, such as the settings we consider in MASSIF, should lie in the 

partial or hybrid synchrony group. Both perspectives are interesting, but it should be further observed 

that there is an important difference between them. In the former case, one just expects the system to 

eventually become synchronous, whereas by exploring the space dimension i.e., acting on the system 

structure, one makes the necessary synchronism happen. From a resilience perspective, in the presence 

of malicious faults, this difference is definitely crucial, since the time-domain behavior for at least one 

part of the system is well-known and can be relied upon despite the attacker power. 
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In the context of MASSIF, a hybrid synchrony model can be explored for instance by assuming that 

some nodes (e.g., edge nodes) have trusted components able to deliver trustworthy time stamps. In a 

more general sense, and given that hybridization has to be enforced by construction, the overall 

distributed system model can be described as a hybrid distributed system model, composed by trusted 

components that are added to the baseline legacy, unreliable and intrusion-prone components. In 

general, we can assume: 

- edge and core layers MASSIF nodes have access to local clocks providing a global and 

trustworthy notion of time; 

- time stamps can, in turn, be used to infer about both the timeliness of events and about their 

ordering. 

Some sensors in payload nodes at the edge layer may not have access to local clocks (e.g., physical 

sensors). This means that events produced by these nodes cannot be time stamped locally, but only at 

the edge MASSIF collector nodes. The accuracy of these time stamps with respect to the real-time 

instant at which events were produced will then be dependent on the behavior of the payload-to-

collector network. Whether or not sensors have access to local clocks, it can happen that the produced 

time stamps may not be trustworthy, which in practice, leads to a situation similar to the one 

mentioned above, made worse with the possibility of malicious time stamp manipulation, at the 

sensors or in transit. In any case, we may assume that: 

- analysis of the time series of events affected by accidentally caused delays (e.g. variable load), but 

correctly time stamped at the collectors, should allow correct reasoning about their semantics, at 

higher abstraction levels, filtering out timing errors; 

- correlation of the time series of different event flows from the same payload-to-collector network 

should allow correct reasoning about their semantics, at higher abstraction levels, masking out 

time stamp tampering. 

Regarding the WAN part of the networking infrastructure, recall that we do not consider it inside the 

defense perimeter. As such, its synchrony properties are bound to be quite uncertain, this made 

potentially worse by attacks (e.g., DoS). However, one can still make interesting assumptions that will 

be used in the MASSIF WAN communication protocols: 

- individual links between any two edge or core nodes have a form of partial synchrony, in the sense 

that message transmission latency is bounded, although it is difficult to state the exact bound;  

- at deployment time, specific bounds will have to be assumed, which means that the specific link 

will alternate between synchronous and asynchronous behavior (respectively when the bound is or 

is not met);  

- in the presence of overloads or attacks to the network in general, in an interval of time, and given a 

sufficient number of alternate links between any two edge or core nodes, there is at least one link 

which behaves synchronously. 

The assumptions made in the fault and synchrony models described above will dictate the kind of 

architectural solutions and protocols that will be developed in MASSIF.  

2.3 Architecture Block Diagram 

The MASSIF SIEM architecture features several layers: Data layer, Event layer and Application layer. 

These layers are superimposed over a Payload layer that we describe for the sake of clarity, but which 

is actually formed by the monitored system, external to MASSIF. The Payload layer actually produces 

the security information and events to be processed by the several MASSIF layers. Indeed, that 

describes reality since, as will be seen later in Section 3, the MASSIF infrastructure is laid down as an 

overlay over the monitored system. 
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Figure 2 - Block diagram of the architecture 

The main building blocks of the architecture are shown in the block diagram of Figure 2: 

- Data layer – event collection, aggregation, normalisation, and pre-correlation 

- Event layer – communication; event dissemination (reliable, in time stamp order); protection. 

- Application layer – event processing, modelling and simulation (including reasoning and 

prediction), decision support and reaction, visualisation, repository. 

- The information flow model features high-bandwidth producer-consumer upstream (cyan arrow): 

events and other security information are produced by the payload layer, pre-processed by the 

Data layer, disseminated by the Event layer to the potentially several elements of the Application 

layer, to be finally processed (consumed) by the latter. Low-bandwidth, low-latency channels 

provide notifications downstream (as suggested by the purple arrow), which may convey 

commands prefiguring reconfigurations of Data layer artefacts, as well as reaction actions 

(countermeasures) to these artefacts or even to payload system nodes. 

Structurally, the MASSIF architecture is quite simple, as will be seen in detail in Section 3, aiming at 

disturbing the monitored system structure (the payload layer) in the least possible way. All MASSIF 

Event and Data layer functions are encapsulated in conceptual modules, placed according to the needs, 

in strategic places of the payload system. These are the MASSIF SIEM parts subject to a greater deal 

of threat. In consequence, they are generally implemented by specialised nodes, which we call 

MASSIF Information Switches (MIS), and which actually make information flow around in a reliable 

way, being also capable of providing some level of perimeter protection. MIS are themselves protected 

against intrusions and tolerant of accidental faults, as will be seen in Section 5. 

The set of interconnected MIS form a distributed infrastructural overlay superimposed over the 

payload, implementing the Data and Event layers, and some ancillary services described in the next 

section. The edge-side interface of this infrastructure is made, as shows, with the monitored system 

(Payload layer). The core-side interface is made with the core servers, which acquire the disseminated 

information and process it. Core servers host services like the SIEM event processing engine, and 

other services like modelling, decision support and reaction, visualisation, repository. 

For the architecture in general, incremental levels of resilience may obtained both at micro (local node 

architecture) and macroscopic levels (inter-node algorithms), by the definition of tradeoffs between 

resilience and cost, complexity or performance of the solutions, as will be discussed in Section 5. 
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2.3.1 Data Services  

The aim of the services in the Data layer is to collect the relevant security data from the payload 

machinery (i.e. the lower layers devices supplying raw security information and event data). These 

devices can be of different forms depending on the application scenario: they may consist of 

specialized servers (e.g., a mobile payment application), network management and protection systems 

(e.g. an intrusion detection system (IDS) or a firewall), or physical sensors (e.g., water level sensor).  

In order to manage and process such heterogeneous data within one common framework, we should 

create conditions for event fusion from those different sources. MASSIF events with different formats 

and origins and from different application domains, need to undergo a process of abstraction and 

coalesce into what we call MASSIF Generic Events, following a common syntactic and semantic 

format, which allows events from anywhere in the infrastructure to be fused into the Event Bus, which 

performs reliable and ordered event dissemination, and gives services at the Application layer a 

convenient way to treat this uniform event flow.  

To perform such task the Data layer provides services for the collection of sensory information from 

the monitored environment, for the processing and filtering out of non-relevant information, and for 

the final normalization of the events. This process transforms the collected events into generic events 

that flow through the events layer for their final delivery to the MASSIF SIEM core. 

Another key service provided by the data layer of the MASSIF architecture is pre-correlation at the 

edge: the objective of pre-correlation is to transfer part of the SIEM intelligence to the edges of the 

architecture in order to balance the load on the core processing engines and to reduce the 

communication traffic. There are several reasons for having pre-correlation at the edge side of the 

network: in the space domain, some specific semantics can be learned from several components in a 

same facility intranet of the setting under attack or going to failure; in the time domain, pre-correlation 

can help compact successive events related to the same syndrome or root cause. Pre-processing can, in 

general, reduce the volume of messages (and data in general) that travel through the infrastructure, 

reducing the data load on the Application level services at the core side of the MASSIF architecture, 

like the Processing Engines and MIS. 

Last but not least, reaction and adaptation services can be provided by agents of the Decision Support 

and Reaction application module, to be performed on MASSIF’s smart sensors, or on native sensors 

and event sources of the monitored payload machinery. They may serve, for example, for 

configuration and reconfiguration of the sensing policies. 

2.3.2 Infrastructure Services  

In this section we give an overview of the ‘infrastructure services’, as we collectively designate the 

services that implement the above-mentioned distributed infrastructural overlay superimposed over the 

payload. The infrastructure services include the Event layer services, essentially supporting the 

reliable flow of information and also controlling communication between MASSIF nodes. They can 

also implement protection, for example of the core services, as will be seen ahead. The following 

services are provided, to be detailed later in the document (see Section 4.2): 

Communication. The communication service is implemented by protocols running amongst the MIS. 

These baseline protocols guarantee that this service is resilient both to accidental and malicious faults. 

Additionally, resilience to overload or denial of service (DoS) attacks is achieved by diverse routing.  

Generic Events Dissemination. An event bus abstraction (Resilient Event Bus) is implemented over 

the communication service, inheriting its resilience, and implementing additional useful properties, 

such as time-stamp based ordering and event fusion from any source, since events are converted to a 

generic syntactic and semantic format. Decoupling between producers and consumers is also achieved 

by the publish-subscribe nature of the event bus. However, given the latency and throughput demands 

of the expected event flows from the edge to the core, the publish-subscribe event bus is intended to 

push the information in near real-time from the publisher to the subscribers (rather than being of an 
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asynchronous, persistent nature). The resilience aspects will be discussed with more detail in Section 

5. 

Protection. When needed, MIS are dual-homed, implementing, besides the SIEM functionality, a 

resident protection service akin to an application-level firewall, acting as a bastion providing perimeter 

defence. As mentioned earlier, this is especially interesting for core-side specific critical subsystems, 

such as the core SIEM event processing engines. 

2.3.3 Application Services 

The services offered by the application layer are aiming to provide the MASSIF core intelligence 

together with the common middleware services required to orchestrate and manage the application 

components. Consequently, the application layer will implement new intelligent and effective ways to 

derive information on the overall state using the observed events acquired and disseminated by the 

above commented layers. Application services can be grouped in the following types of services, to be 

detailed later in the document (see Section 4.3): 

Event processing. A highly scalable event processing engine is the responsible of processing large 

amounts of streaming data in real time, as well as stored events for forensic analysis, with multi-level 

abstraction and correlation capabilities based on user-defined rules in a distributed, efficient, elastic 

and scalable way. 

Modelling and simulation. This group of services will implement new process/attack analysis and 

simulation techniques in order to be able dynamically to relate events from different execution levels, 

define specific level abstractions, evaluate them with respect to security issues and during runtime 

interpret them in context of specific security properties. Two main modelling and analysis 

complementary approaches are integrated at this level. On the one hand, the Predictive Security 

Analyser (PSA) provides application aware security monitoring capabilities, supporting the near future 

application simulation and the prediction of potential security violations. And, on the other hand, the 

Attack Modelling and Security Evaluation Component (AMSEC) provides techniques for attack 

modelling and simulation, threat analysis and risk evaluation. 

Decision support and reaction. The Decision Support and Reaction subsystem develops an 

administrative tool allowing the security policy consolidation through the different infrastructure’s 

components in an organization, and to configure automatically those components based on selected 

countermeasures (by the operator/automatically). In addition to the modelling of systems and 

dependencies, this service will include also simulation capabilities that will allow submitting 

simulation models and simulation parameters to support quantitative evaluation and comparison of the 

attack and counter-measures impact. 

Storage and Visualization. In addition to the functional services described above, some middleware 

application services are required to agglutinate the application layer components and to interface with 

the end user. These middleware services are mainly composed by:  the short-term storage and long-

term storage (for events, alerts, vulnerabilities, attacks, configuration, weaknesses, platforms and 

countermeasures) and visualization capabilities, allowing real-time security-incident notification, 

security status monitoring, analytics and reporting. The visualization tools will also support the 

specification of security parameters, queries, rules, policies, procedures and models of the overall 

infrastructure. 
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3. Structural View  

In this section, the structural model of MASSIF is explained, proposing a topology relating the 

payload system (monitored system) with the SIEM system (monitoring system), discussing the 

placement of the main components and the network and event dissemination structure. 
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Figure 3 - MASSIF architecture structural view - payload (brown) vs. SIEM (blue) 

 

The structure of a MASSIF SIEM system is shown in Figure 3. Let us recapitulate the notion of the 

MASSIF SIEM system (blue) actually laying out an infrastructural overlay of the monitored system 

(brown). The overlay is implemented by MASSIF Information Switches (MIS).  

We model both the payload and the SIEM system interconnection as WAN-of-LANS [17] a useful 

construct to represent loosely-coupled wide-area infrastructures, pertaining to the same or different 

administrative domains, such as those envisaged as the target scenarios for the MASSIF technology. 

They are typically made-up of several facilities sometimes widely separated geographically, whose 

local intranets are interconnected through public networks like the Internet, possibly forming virtual 

private networks under the protection of secure channels or tunnels. It is easy to decouple the threat 

scenarios faced by the WAN part from the LAN parts and, moreover, it is quite simple to consider 

distinct levels of trustworthiness for different selected facilities and their LANs. The ’LAN’ concept is 

used in a generic way to mean ”short-range”, whose implementation may in fact involve switching or 

routing topologies at layers 3-1 (physical to network layer). 

We note that the payload system can retain its essential characteristics when the SIEM infrastructure is 

superimposed on it, since both work essentially in parallel. The hooks or contact points between both 

are clearly materialised by the devices mentioned above: the MASSIF Information Switches (MIS). 

An alternative implementation, also shown in the figure, is the MASSIF Information Agent (MIA), 

which brings MASSIF intelligence deeper into the payload, implementing MASSIF remote smart 

sensors, as we explain in the next sections. 
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3.1 MASSIF Information Switch/Agent 

For the sake of taking advantage of the architecture asymmetry, we separate between edge and core 

MIS which, though similar in nature, may have different configurations, be treated differently e.g., by 

producer-consumer protocols, and/or have different complexity and resilience. 

Additionally, MIS being typically implemented as stand-alone machine/devices, for modularity, ease 

of configuration, performance and protection reasons (we may think of a MIS as an appliance box 

plugged onto the network), we also foresee software implemented versions of the same module, which 

we call MASSIF Information Agents (MIA). An MIA is a software appliance residing in edge payload 

nodes. The essential difference between the edge-MIS and the MIA depicted in Figure 3, is that the 

first is implemented by a ’box’ which resides on the network and can be addressed by any device of 

the payload, through standard protocols like TCP/IP. This is the standard situation, where MASSIF 

SIEM relies on the payload’s own sensors, and does not involve any modification of the information-

producing devices, which send their log, event or alarm files to the nearest edge-MIS.  

On the other hand, the MIA implements a remote smart sensor, that is, a MASSIF compliant sensor 

which allows part of the data layer functions to be performed in the payload machinery. This requires 

payload nodes to offer a local API to the basic sensing apparatus (syslogs, event services, etc.), and be 

open to installing external software modules, but apart from that, it should require minimal host 

modifications, allowing swift integration of MASSIF functionality into non-closed payload nodes.  

3.2 Event Bus 

MASSIF Information Switches also play an important role as generic communication servers, namely 

implementing the Resilient Event Bus, REB. The collection of MIS devices run the secure, reliable 

and real-time communication protocols needed to implement the Resilient Event Bus abstraction. 

These protocols can use essentially the same kind of substrate of communication as the payload 

system. More secluded architectures for highly critical applications can nevertheless be foreseen, with 

dedicated secure circuits or virtual private networks to implement the REB. Though this component 

will henceforth be designated Resilient Event Bus, the resilience aspects will be discussed later in 

Section 5.3, whereas here we introduce the functional aspects. 

The  Resilient Event Bus (REB) is mainly in charge of disseminating the events collected by the edge-

MIS/MIA, after being pre-processed by the Data services implemented in the same edge-MIS/MIA, to 

the core-side Application layer services. The trustworthy MIS-to-MIS interconnection secures these 

information flows. The REB delivers the information to the core-MIS, which communicate reliably 

with the core engines, at the same time protecting them from external attacks, acting pretty much as a 

sophisticated firewall.  

The REB should encompass both events created by the periphery and events generated from within the 

SIEM machinery. As shown in Figure 3, events are published into the event bus, mainly by the edge-

MIS, to be delivered to the core-MIS subscribers. But this does not preclude edge-MIS from 

subscribing, or core-MIS from publishing events. In fact, that happens each time there are notifications 

or commands sent from the core services down to the edge of the infrastructure.  

The flow from edge to core, as the figure suggests, is expected to have much greater bandwidth than 

the flow in the opposite direction, used to carry commands in reaction to the analysis performed by the 

correlation engines and other application services. In fact, given the latency and throughput demands 

of the expected event flows from the edge to the core, the event will push the information in near real-

time from the publisher to the core entities having subscribed to it, the Event Processing Engine being 

the main subscriber.  
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3.3 Edge-side Services 

In the MASSIF model, we consider that edge-side monitored system payload devices actually have 

their own basic sensory apparatus in place, be them raw event sources/emitters --- e.g. logs --- or 

native sensors --- purposely made metrology artefacts that measure Key Performance Indicators 

(KPIs) or alarm conditions of the payload systems. These are normally supplied with the monitored 

systems, even if they are extensions to basic configurations. We will generally call (monitored system) 

sensors to whatever is in place to acquire the raw security information and event data from the 

payload. The edge-MIS then act as collectors of information from the payload sensing apparatus, at 

the Edge-side Infrastructure Interface. Each edge-MIS is then in charge of implementing part or all of 

the Data services foreseen in MASSIF, which perform some sophisticated data processing. Namely, an 

edge-MIS should do at least event collection. However, it will normally implement other services as 

well, namely the normalization of the event formats and contents, aggregation of several events, and 

even some local pre-processing and correlation. Likewise it may also host agents capable of 

performing reaction and adaptation commands. These services will be detailed in Section 4.1. 

Generally speaking, we talk of MASSIF smart sensors, to address the edge-MIS data modules that 

acquire and process the basic information coming from payload sensors. This duality is shown in 

Figure 3. 

An important alternative is brought into play by MASSIF Information Agents (MIA), described 

earlier. Whereas edge-MIS rely on the payload sensors and are confined to their limitations, some of 

functionality, some caused by faults or attacks (see Section 2.2), MIA introduce the notion of remote 

smart sensor, with two key advantages: part of the Data services may be performed in the MIA, in 

symbiosis with the local sensory apparatus, improving the quality of information and event 

acquisition. Actually, Data services can be split as wished between the MIA and the edge-MIS to 

which it connects (see Figure 3). 

The additional integration effort of MIA into selected existing payload devices may well be justified 

for nodes offering reasons for local MASSIF intelligence: critical nodes such as core routers; nodes 

that are themselves very rich in information and event sources. As a matter of fact, certain devices, 

such as firewalls or IDS (Intrusion Detection Systems) are so rich and sophisticated in the information 

they provide, that it makes sense to incur the cost of porting (some of) the MIS services to a software 

module compliant with the architecture of the former. Another reason for resorting to an MIA is when 

a given payload device, albeit important, does not have incorporated sensors (i.e., lacks software 

modules capable of generating syslogs, events, etc. in a format exportable or understandable to the 

MIS). This will be rare in IT, but may happen in control devices such as used in critical 

infrastructures. A slightly higher integration effort may be well justified for critical devices lacking 

sensing capability. 

In any case, one of the advantages is the capability of pre-processing and filtering the information, and 

even tuning those firewall or IDS devices in special ways, in response to commands issued by the 

Application layer. Another advantage of the MIA approach is guaranteeing a more trustworthy 

information and event feed from/to that particular payload node, not subject to the communication 

faults and attacks discussed in Section 2.2, since MIA-MIS interconnection is made through MASSIF 

reliable communication protocols. 

3.4 Core-side Services 

Core SIEM services are for example the event processing engine, and other services like modelling, 

decision support and reaction, visualisation, repository. The core application services process the 

information and events arriving from the edge, performing complex event analysis, normally using the 

stream data processing model, trying to find correlations in the data and detect anomalies (failures, 

intrusions). Besides correlation, data is also archived in resilient storage, in order to allow ulterior 
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forensic analysis. Reaction modules may generate commands to modify the sensing and collecting 

conditions, or even modify protection or filtering apparatus like firewalls or IDS, namely those 

mediated by MIA. 

Auxiliary services are any non-critical services that are not part of MASSIF, but may be of interest to 

the operation of MASSIF as a whole (long-term archival, email, web apps, reporting, printing, 

etc.).The application services are bound to reside in data centres either of the monitored system’s 

organisation (running its own MASSIF SIEM system) or of a third party organisation (in the case of 

an outsourced MASSIF SIEM managed service). Remember that MASSIF is supposed to operate 

through diverse administrative domains, and this is one of the reasons.  

As Figure 3 suggests, these core-side critical subsystems (Core SIEM services), for example core 

SIEM event processing engines, are supposed to be housed in perimeter-protected LANs connected to 

the MASSIF WAN-of-LANs. As mentioned earlier, dual-homed MIS can implement this protection: 

as depicted in the figure, such core services lie behind a MIS, which filters all access, both from the 

network and from the facility intranet. In fact, with regard to the latter, note that the Auxiliary 

services, which belong to the payload, can only interact with the core services via a MIS. 

Structurally, SIEM event processing engines deserve special attention, since they are the most data 

intensive of all core-side, application services. SIEM engines can be integrated or distributed, and its 

functions can be centralized or decentralised. The MASSIF architecture actually supports any of these 

variants of SIEM engine implementations, due to the modularity provided by the MIS concept. The 

content-based information dissemination characteristic yielded by the publish-subscribe paradigm 

offers an easy way for core-MIS resident services to manage issues like fragmentation and 

dispatching, parallelism and replication, depending on the way SIEM engines are for example 

distributed or replicated by different facilities or data centres. 
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4. Functional View 

The global information flow in the MASSIF architecture is depicted in Figure 4. Information is 

captured at the edges, as shown earlier in the structural view of the system (Figure 3), processed in the 

Generic Event Translation modules which perform event collection, aggregation and normalisation, 

and then disseminated to the application services. The Event Processing module (Complex Event 

Processing Engine, CEP), performs correlation amongst related events from the raw event flow 

coming from the periphery and stores both raw events and correlated events in the Repository. Note 

that event processing is enhanced by pre-correlation that already happens in the Generic Event 

Translation module. The Repository allows indirect communication with the other application 

modules. The Model Management services perform modelling and simulation, and further generate 

additional syndromes: threat models and security alerts, which are fed back to the repository. Finally, 

the Decision Support and Reaction (DS&R) service analyses both the original event digests and the 

threat model digests and security alerts, and triggers reaction and adaptation measures, translated for 

example in modified policies, which are sent back to the edge, to the DS&R agents, and affect the 

sensing and periphery event processing modules. 
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Figure 4 - Global Information Flow in the MASSIF Architecture 

 

In the following sections, the functional aspects of each service module will be explained in detail. 

4.1 Data Services  

4.1.1 Event Collection, Aggregation and Normalisation  

The main purpose of the MASSIF data services is to deliver security information flows to the MASSIF 

core. In order to do so, this layer must provide the functionalities for the collection, aggregation and 

normalization of the events generated by the payload machinery and use the MASSIF Infrastructure 

level services to provide the relevant security data to MASSIF applications by exploiting the services 

offered by the MASSIF resilient framework. When required (e.g., in outsourced SIEM systems), this 

is also the place in the architecture to perform anonymisation. 
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The Data layer must be able to handle a wide set of security-related data formats, generated by the 

security event sources deployed in the MASSIF use cases. Thus it provides the functionalities for the 

translation from these data formats to the unified MASSIF generic event format which is tractable by 

the MASSIF applications. It also provides the functionalities for time-stamping and disseminating 

translated events through the MASSIF infrastructure to the MASSIF Application layer, using the 

Resilient Event Bus.  

  

Figure 5 - GET data flow diagram 

 

In order to perform these tasks, the data layer includes the following three functionalities: 

- Collection of raw events from the Payload Machinery. All the raw events produced by the security 

related sensors in the monitored systems are delivered to the data layer, which allows the security 

data to enter the MASSIF SIEM platform (see the block diagram in Figure 2). Raw events are 

collected from the data sources, which may pertain to different layers of abstraction and follow 

different formats, and they are transferred to the data layer in a textual form through the 

appropriate protocols (e.g., syslog). This diversity is suggested by the colour coding of the 

different flows from the Dispatcher. 

- Aggregation of closely related events. In some cases the same real world event can generate many 

redundant computer events, which carry few or no additional information. In these cases events 

need to be aggregated before being delivered to the upper levels, in order to avoid repeated 

notifications and also to prevent flood of events that may clutter the dissemination and processing 

elements of the MASSIF framework; 

- Normalisation of all events and information to the MASSIF generic event format. The MASSIF 

SIEM is called to deal with highly heterogeneous types of events and information. The collected 

events go through a normalisation process that converts them to a common and generic 

representation format hiding this heterogeneity (this normalisation is suggested by the uniform 

colour of the flows converging on the Events Handler after processing). In fact, any event message 

exchanged between MASSIF modules follows this common format. This allows the SIEM 

platform to transparently manage all the different data, whatever its source. 

In order to implement these translation functionalities, the abovementioned data layer services are 

organised in a framework for event translation named Generic Event Translation (GET), whose main 

components are represented in Figure 5. For the extraction of the relevant data fields from the different 

types of events, the GET framework relies on a component called Adaptable Parser [8] , [9] . GET is a 

dynamically reconfigurable framework that allows collection and identification of the events from 
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different sources. It acts as wrapper for the functionalities of the adaptable parsers in order to make 

their usage and management more efficient.  

The translation process within the GET framework is organized as follows: the events are collected 

from their source, the input format is recognized, the event is parsed by the adaptable parsers, the 

relevant data from the event is converted to the MASSIF event format, and finally the MASSIF event 

is time-stamped and forwarded to application layer, through the event layer generic events 

dissemination services.  The GET framework has a modular architecture, whose operation is 

coordinated by the GET Manager. 

The entry point for the events generated by the payload machineries is the Event Dispatcher. The 

Dispatcher connects events from different sources and formats to the appropriate adaptable parser, 

through a GET Access Point (GAP). The GET Manager creates GAP instances on demand, to handle 

new sources. The Manager also supervises the dynamic activation, deactivation, and update of the 

Adaptable Parsers, which implement the actual grammar-based parsing functions. After parsing and 

extracting the relevant information from a specific event format, the MASSIF Events Handler (MEH) 

deals with the final conversion into the MASSIF Generic Event format, and the dispatching to the 

event layer, so that events can be sent to the application layer, where the SIEM core services reside. 

 

4.1.2 Pre-correlation  

The MASSIF SIEM architecture features early correlation mechanisms at the periphery, on the edge 

side, which we call pre-correlation. We believe that it makes sense to try and recognize security-

relevant patterns which may be symptoms of malicious or anomalous activities perpetrated over a zone 

of the target distributed system --- both on events belonging to the same architectural layer (intra-layer 

correlation) and on events belonging to distinct architectural layers (cross-layer correlation), but taking 

advantage of the natural topological affinity of events gathered in a same zone or subsystem of the 

target (e.g., a VLAN, a DMZ, etc.). 

 

 

Figure 6 - GET framework enhanced with pre-correlation Security Probes 
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The component in charge of pre-correlation is called a Security Probe (SP). A Security Probe is 

capable of including new event classification rules and using them in order to improve the accuracy of 

the detection function. SP modules are deployed within a Generic Event Translation (GET) framework 

instantiation, as shown in Figure 6 and, as such, they reside in edge-side MASSIF Information 

Switches (MIS). There may be more than one SP within the same GET framework. Besides processing 

events to be directly disseminated to the upper layers, the GET framework performs the necessary 

upstream data processing for the SPs. A Security Probe is selectively fed by the output of parser 

components of the GET framework. Besides the generic adaptable parsers, there may be fixed parsers 

specially designed to fit the SP needs. The parser outputs may be configured to go exclusively to the 

SP or to the application layer correlation engines, or to both.  

SPs, upon detection of positive correlations, act by generating alert events, which are created directly 

in the MASSIF generic event format, so that no further translation process is required. These alert 

events are sent to the application layer through the MASSIF Event Handler of the GET framework. 

These alert messages receive a trusted timestamp, so that they can be meaningfully correlated with 

other events, e.g., in the core application layer services. As a matter of fact, a typical consumer of the 

alert messages is the MASSIF Processing Engine. The Security Probe is essentially an event detector. 

As shown in Figure 6, the Security Probe uses the information extracted by the parsers to identify 

anomalous service events or patterns: the event detector’s engine is based on Finite State Machine 

modules built from predefined service rules.  

In order to achieve such objective, a dedicated software module, the Security Event Tracker, is in 

charge of identifying specific events occurring in the infrastructure based on the information extracted 

by the Data Parsers. For example in case of service pattern recognition, the normal infrastructure 

behaviour is modeled through the Finite State Machines (FSMs). Whenever an unauthorized transition 

from one service status to another one is detected by the Security Event Tracker, an alert is generated.  

It’s worth highlighting here the main differences between the GET and the combined GET and SP 

event flows. The GET framework agnostically translates the input generated by the monitoring 

sensors, integrating at run-time new and heterogeneous event sources, by dynamically and seamlessly 

reconfiguring and deploying adaptable parsers. It is also in charge of performing a normalization 

process of the pre-existing event sources. The Security Probes (SP) have been conceived to add some 

intelligence to the information flow generated by GET, by spotting and reporting anomalous events 

based on predefined sets of security patterns expressed by means of Finite State Machine rules. 

Moreover its output messages do not require any additional normalisation. 

4.1.3 Reaction and Adaptation  

As discussed in Section 4.3.3 ahead, the Decision Support and Reaction (DS&R) application module 

may issue decisions about pending threats, part of which imply sending down to the edge, the 

necessary reaction and adaptation commands, to be effected on MASSIF smart sensors, or on native 

sensors and event sources of the monitored payload machinery. 

These hooks for configuration and reconfiguration of the sensing policies are called Policy 

Enforcement Points (PEP), and they are implemented by a set of DS&R agents, as suggested in Figure 

7, which ensure the configuration of the associated components’ policies. So, every time a new 

component needs to be managed, a specific agent will be created based on the component’s need. 

DS&R agents aim both at reconfiguring Policy Enforcement Points (PEP) components and at 

providing assistance to manage contextual information that is not natively handled by the PEP. PEP is 

used herein as a generic term for components within an IT infrastructure that act as gateways for 

requests, and can alter them; examples of such components are firewalls, intrusion detection sensors, 

anti-virus, web application gateway, LDAP directories or radius servers. The DS&R agent subscribes 

to instructions from the DS&R application module, published in the form of MASSIF generic events, 

as depicted in Figure 7. Then, it takes the request and configures the PEP according with the policies 
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specified. The DS&R agent is able to detect context changes and define the new set of policies, in 

order to apply the required configurations.  

 

Figure 7 - Decision Support and Reaction (DS&R) Agent: Reaction and Adaptation 

Decision Support and Reaction agent architecture 

The DS&R agent resides either on an edge-MIS or on a MIA co-located with payload components. Its 

goal is to execute the policies dictated by the core DS&R module, adapting the monitored system's 

security policy (and thus its configuration) to the detected threats. It will implement any functions 

needed to adapt to new circumstances or react to threats by reconfiguring the sensing apparatus and 

payload system’s security policy. 

The edge-MIS solution applies when the Policy Enforcement Points (PEP) is a closed environment 

and has a channel with sufficient QoS to the edge-MIS. The MIA solution applies in the case where it 

makes sense to have local intelligence and/or it is made possible by those PEP component's openness. 

In the edge-MIS installation, the DS&R agent: (1) effects new configurations on MIS-local smart 

sensors (receiving directly from remote payload native sensors or event emitters); or (2) it can 

remotely effect the configuration of payload components PEP (the very native sensors or event 

sources/emitters). In the MIA installation, the DS&R agent: (3) effects new configurations on smart 

sensors local to the MIA (receiving locally from local payload native sensors or event emitters); or (4) 

locally effects the configuration of payload components PEP (the very native sensors or event 

sources/emitters). 

The DS&R agent is actually composed of two sub-components, the configuration agent and the 

context monitor. Both components are hosted together. The configuration agent receives information 

from three different sources: the PyOrBAC engine of the core DS&R module
2
, in order to create 

organizations and subjects; the context monitor, in order to implement the policies; the administrator, 

through an API that allows the user to set the mapping information between the PyOrBAC and the 

PEP elements. This agent translates the policies from the PyOrBAC format to the set of instructions 

needed to apply and execute the rules. The context monitor is used to manage all the contexts defined 

in PyOrBAC. It performs this by monitoring the environment to check if the context has changed, in 

such a case, it informs the configuration agent of the new condition in order to apply the 

corresponding policy. 

                                                      
2
 PyOrBAC is an OrBAC-based security policy engine implemented in Python, which is the core of the DS&R module, to be 

discussed further in Section 4.3.3. 
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Interaction with other MASSIF components  

The Generic Event Translation Framework consolidates the MASSIF data services components. It 

stands in between the security information and event sources of the payload machinery and the 

MASSIF infrastructure services performing generic events dissemination (i.e., the event layer), 

feeding the MASSIF application layer. The GET framework is normally deployed in edge-side 

MASSIF Information Switches (MIS). 

A subset of the translation capabilities of the framework can also be made available in MASSIF 

Information Agents (MIA). MIAs are smart security sensors that are deployed together with important 

sources of security events. As these smart sensors are specifically developed for the integration of 

these sources in MASSIF, local translation capabilities make it easier to plug them into the MASSIF 

framework. 

 

4.2 Infrastructure Services  

4.2.1 Generic Events Dissemination 

In this section we deal with the functional aspects of the generic events dissemination service, 

implemented by the Resilient Event Bus (REB). As explained earlier, the resilience aspects will be 

discussed later in Section 5.3, whereas here we focus on the functional aspects. 

The REB performs generic event dissemination towards the services in the core-side of the 

infrastructure, namely the event processing engine. The bulk of the traffic will be in this direction, 

from the edges to the core, but in some cases it might be necessary to relay back commands. For 

example, when the Model Management service forms a suspicion that an attack might be in progress, 

the Decision Support and Reaction service, upon processing this alert, might instruct its agents (see 

Sections 4.3.3 and 4.1.3) in the edge MIS and/or payload sensors to start collecting more detailed 

information about the status of the network and specific nodes. 
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Figure 8  - Resilient Event Bus architecture 

Figure 8 offers a detailed view of the Resilient Event Bus internal architecture, making its 

implementation clearer. REB aims at providing a ‘generic events’ abstraction where events published 

from different origins coalesce on the layer, are temporally ordered, and made available to the 

subscribers.  
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One of the key factors to achieve this goal is that events follow a common syntax and semantics, 

whatever their origin, the MASSIF generic event format mentioned earlier. Another key factor is the 

availability of trusted timestamping, i.e., that event timestamps must be globally meaningful, that is, 

clocks at the relevant end-points must be globally synchronised to an adequate precision, and 

trustworthy. A third and final key factor is that events are treated seamlessly, whatever their origin or 

destination: (i) events produced or consumed by the payload machinery (outgoing events and 

information; incoming commands); or (ii) events produced or consumed by the SIEM machinery 

(incoming events and information; outgoing commands).  

The unusual L-shaped structure of the REB architecture guarantees these objectives, by making a 

seamless connection between the external system, the monitored payload machinery, on one leg, and 

the internal MASSIF SIEM system, on the other leg. 

Recall that the payload machinery contains the raw security information and event sources. This alien 

sensory information of diverse origins is captured and undergoes a translation, normalizing it into 

generic events understood by the MASSIF SIEM system, which are fed into the Resilient Event Bus. 

On the other hand, Application services are also capable of producing native MASSIF generic events, 

which for example convey notifications or commands, also fed to the REB. Finally, pre-correlation 

modules at the edge are also capable of synthesizing events to be fed to the REB. These events of 

several natures and origins coalesce on the bus and are then published to eventual subscribers 

(actually, MIS nodes). 

The event bus layer publishes events following a common syntax and semantics, whatever their origin 

and direction, and following pre-defined delivery reliability and causal and temporal ordering 

properties. It is bidirectional but asymmetric: upstream, it conveys high-throughput data, sourced by 

edge-MIS and sinked by core-MIS; downstream, it conveys low-throughput commands, sourced by 

core-MIS and sinked by core and/or edge-MIS. Some of these events may possibly undergo a reverse 

translation and be passed-on to environment machinery, e.g. MIA, by the subscribing edge-MIS. This 

is the way we foresee commands or notifications getting ultimately to payload devices in a uniform 

way. 

Mapping the specific REB architecture onto the MASSIF layers, Translation services map onto some 

of the Data layer services, such as collection, aggregation and normalisation. In consequence, this part 

of the REB functionality will be implemented in MIS (general case), in MIA (smart sensor case), or 

split between both. The Communication services are concerned with the MASSIF protocols 

responsible for the actual propagation of events via the regular Network Support system (the WAN-of-

LANS mesh), ensuring they reliably arrive at all intended destinations. This part of the REB 

functionality will be implemented in MIS. Ordering and synchronisation mechanisms create the event 

bus abstraction in all MIS units for the intended subscribers. The event bus obviously maps onto the 

Event layer of the general MASSIF diagram. 

4.2.2 Secure Communication 

We saw that the set of MIS form the distributed infrastructural overlay superimposed over the payload. 

This overlay is actually implemented by a dedicated resilient communication service. The 

communication service is implemented by protocols running amongst the MIS. These baseline 

protocols guarantee that this service is resilient both to accidental and malicious (or Byzantine) faults, 

given the fault/attack model outlined for MASSIF (see Section 2.2). Additionally, they establish 

concurrent routes between MIS, to overcome severe threat scenarios like overload or denial of service 

(DoS), by achieving routing resilience. Communication protocols can benefit from the foreseen 

asymmetry between upstream and downstream communication, in terms of sinked and sourced 

throughput, for more efficient solutions. The combination of security and real-time requirements 

however makes the implementation of this service a challenging objective. The communication 

service also serves additional purposes: to send down-stream commands; to effect control 

communications between peer MIS.  
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4.3 Application Services  

This section describes the several Application Service modules. Figure 9 gives a high-level view of the 

logical interactions between these modules, which will be detailed below. 

 

Figure 9 - Overview of the Application Service modules and interactions 

The application layer services use the event dissemination infrastructure to get event information from 

the edge, and also to send back events (e.g. reaction and reconfiguration) to the edge. Once inside the 

Application Layer, application services rely on the event processing engine to process all incoming 

events and generate alarms. Input and output events are also persisted in the event repository, part of 

the general repository module depicted in Figure 9, as an alternative means for application service 

components to manipulate events, as well as to enable historical forensic analysis of events. Therefore, 

the different application components may choose between using a streaming interface and/or the data 

store API to get access to events. Whenever required, communication between application modules 

can also be made through other direct communication protocols suited for the purpose. The current 

architecture configuration favours indirect communication through the repository as depicted in Figure 

9. 

4.3.1 Event Processing 

Processing of events in the MASSIF SIEM is performed by a highly-scalable, elastic correlation 

engine [1] . The latter is materialized as a parallel Complex Event Processing (CEP) system that is 

capable of (i) aggregating the computing power of a large cluster to process massive amounts of 

events per second and (ii) adjusting the number of allocated resources to the real input load. 

The behavior of the engine can be extensively customized through CEP queries (CEP queries are 

transparently generated from user-defined standard SIEM directives, designed e.g., with OSSIM) that 

define how to abstract, transform, aggregate and correlate input events. A CEP query is composed of a 

number of operators, defined in [2] . 
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Figure 10 - Event Processing: Correlation Engine overview 

 

The internal architecture of the engine and its interaction with the other components of the MASSIF 

SIEM are shown in Figure 10. The engine is characterized by a number of processing instances 

arranged in a sequence of subclusters. All processing instances of a subcluster run the same portion of 

the CEP query, called subquery (efficient techniques to partition a query into subqueries are discussed 

in [1] ), receiving input events from the previous subcluster and feeding output events to the following 

subcluster. The first subcluster of the sequence receives input events directly from the Resilient Event 

Bus, with the use of the CEP connectors. Output events of the last subcluster are available both 

through a streaming API to other application modules and to the MASSIF Repository. Partial results 

from intermediate subclusters are also available. 

The Elastic Manager monitors the status of each processing instance and adjusts the size of a 

subcluster (e.g., adding or removing instances) according to its current input load. Adding or 

decommissioning processing instances requires the Elastic Manager to interact with the Resource 

Manager, which keeps a pool of available instances. At any time, the Elastic Manager can also re-

distribute the load across the processing instances currently allocated to the subcluster. Efficient 

techniques to add/remove processing instances or to re-distribute the input load are discussed in [3] . 

Finally, the Query Compiler/Deployer receives a standard SIEM directive as input, either from the 

visualization component interface or the Model Management component, translates it to a CEP query, 

partitions it into subqueries and deploys each subquery to a subcluster. 

 

Interaction with other MASSIF components 

Input events come from the edge services through the resilient event bus and are injected into the 

correlation engine via CEP connectors. The output of the CEP queries is consumed by the modelling, 

reaction, and visualization services. Currently, they can be consumed via the event API. However, an 

alternative method will be provided to access the data by storing them in the repository based on a 

highly scalable cloud data store. 
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4.3.2 Model Management 

The Model Management block is composed of two modules, described below: the Predictive Security 

Analyser (PSA), and the Attack Modeling and Security Evaluation Component (AMSEC). 

Predictive Security Analyser 

The Predictive Security Analyser (PSA) provides advanced, application aware security monitoring 

capabilities to the MASSIF SIEM. Specifically, it supports close-future process behavior simulation 

and prediction of possible security violations. Its block diagram is depicted in Figure 11. The quality 

of the performed analysis strongly depends on the quality and granularity of the process description as 

well as on the appropriate security event specifications. 
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Figure 11 - Predictive Security Analyser Component (PSA)  

 

Security event modeller and process modeller. Prior to the start of the engine, the process description 

and security goals/events will be transformed into PSA understandable models (Asynchronous Product 

Automata (APA)), which are going to be used for the continuous real-time analysis and close-future 

simulation. This will be done in the security event modeller and the process modeller components. 

They will communicate with the model repository, which contains the attack models of the AMSEC 

tool and the previous models composed by the modellers. The security model and process model 

interfaces will provide access to the repository for the PSA engine. The interpreted models will be 

imported into the PSA in the initialization phase. 

The PSA modeller components support the security requirements elicitation, the specification of a 

simulation model, and the development of monitoring rules (CEP queries). High level security goals, 

security requirements, monitoring rules, the developed specifications and the relations between them 

will be stored in the MASSIF repository. These relations will enable correlation of PSA alarms with 

high level security goals and security requirements. Furthermore, asset descriptions and event formats, 

which are stored in the Repository, are needed in order to associate asset information with events 

received and alarms transmitted by the PSA via the repository.  
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Interaction with other MASSIF components 

In order to assure the seamless interaction with other components of the MASSIF SIEM, the PSA 

supports a number of external interfaces. 

- PSA interaction with the repository 

The MASSIF repository is the main data source and information exchange interface between the PSA 

and other MASSIF components.  

The event type interface is a point of interaction between the PSA and the event type registry. This 

registry manages a database of XSD event schemas, which defines the format and the content of all 

events processed by the PSA. The event schema database is provided by the MASSIF repository. The 

event interface communicates through the MASSIF repository with the event processing engine. It will 

feed the PSA (low-/high-level) events and alerts. The seamless interpretation of these events within 

the engine relies on the content of the database of XSD event schemas in the MASSIF repository.  

The security alarm interface delivers the identified current or close-future security violations to the 

MASSIF repository in the form of PSA alarms. This notifies other MASSIF components about 

detected critical situations in order to enable immediate/proactive actions against the upcoming 

security threats based on the provided information. 

Other MASSIF components, such as AMSEC, deliver their results via the repository to the PSA. This 

will enable the PSA to incorporate these results into the simulation process and to adapt the simulation 

strategy.  

- PSA interaction with the event processing component 

Correlation rules identified by the PSA modeller components have to be delivered to the Event 

Processing component in order to enable the activation of the developed monitoring rules with events 

delivered by the generic event dissemination.  

- PSA interaction with the visualization interface 

Results of the multi-level predictive security monitoring performed by the PSA, such as current or 

close-future security violations, can be presented to the security officer through the MASSIF 

visualization component in order to facilitate decision making and choice of countermeasures.   

 

Attack Modeling and Security Evaluation 

The Attack Modeling and Security Evaluation Component (AMSEC) is intended to complement the 

direct analysis functionality of the SIEM system, by providing the architecture with the capability of 

attack modeling and security evaluation [6] . 

The main inputs are: configuration of the computer network (or the system), security policy for the 

computer network (or the system) determining a set of permissions or policy rules, event and alerts in 

the computer network (or the system), external databases (DBs) of vulnerabilities, attacks, platform, 

etc., possible malefactor profiles (as a set of malefactor characteristics), required values of security 

metrics (as a set of requirements to security). 
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Figure 12 - Attack Modelling and Security Evaluation Component (AMSEC) 

 

The main results are as follows: vulnerabilities detected; possible routes (graphs) of attacks and attack 

goals; payload internal dependencies; bottlenecks (“weak places”) in network security; adjusted attack 

trees based on changes in the network; predictions of the intruder’s next steps taking into account the 

current situation; security metrics, which can be used for general security level evaluation of computer 

network (system) and its components; attack and countermeasures impacts; guidelines for increasing 

the security level and solutions based on security measures/policies/tools.  

The AMSEC operates in two main modes [6] : (1) Design time (or configuration) stage, where 

AMSEC is used for design and initial analysis of the network analyzed (or the system under 

protection). It is a non real-time mode; (2) Exploitation stage, where AMSEC is used for real-time or 

near real-time operation in the framework of the SIEM system. 

The general architecture of AMSEC and its interaction with other components of MASSIF SIEM are 

shown in Figure 12. Connections, depicted in the figure, show the direction of interactions between 

different components.  

- The Data repository updater downloads the open databases of vulnerabilities, attacks, 

configuration, weaknesses, platforms, and countermeasures from the external environment 

(sending requests to external databases for updates and communicating with data sources).  

- The Specification generator (SG) converts the information about network events, configuration 

and security policy, from other MASSIF SIEM components or from users, into an internal 

representation.  

- The Malefactor modeler (MM) determines malefactors’ individual characteristics, skill level, their 

initial position (insider/outsider, available points of entry, etc.), the set of permissions, possible 

actions/attacks already fulfilled (which can be predicted according to events and alerts) and 

knowledge about the analyzed network.  

- The Attack graph generator (AGG) builds attack graphs (or trees) by modeling sequences of 

malefactor’s attack actions in the analyzed computer network using information about available 
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attack actions of different types, services dependencies, network configuration and used security 

policy. Attack graph generator can also build attack traces taking into account zero-day 

vulnerabilities – unknown vulnerabilities which are required to compromise network assets.  

- The Security evaluator (SE) assists the selection of solutions (validated events and alerts, possible 

future security events, countermeasures) needed for other MASSIF SIEM components. It 

simulates stochastically multi-step attacks and studies the cost and effect of various 

countermeasures. For example, it generates combined objects and calculates their security metrics 

in order to evaluate the common security level and possibly make recommendations on 

strengthening it.  

- The Reports generator shows vulnerabilities detected by AMSEC, represents “weak” places, 

generates recommendations on strengthening the security level and depicts other relevant security 

information.  

Interaction with other MASSIF components  

Results and setting of the Attack Modeling and Security Evaluation Component (AMSEC) are 

presented at and controlled through the Visualization Component. The major part of input and output 

data flows goes through Repository. Interaction with Visualization and Repository components takes 

place at all stages and modes of AMSEC operation. 

At each stage of functioning (Design (configuration) and Exploitation) AMSEC interacts with 

different MASSIF components. 

- Design (configuration) stage 

AMSEC needs to have a detailed description of protected network topology and configuration for 

correct and efficient operation. This information is retrieved from the user (through the Visualization 

system), from predefined data (through Repository) and from sensors placed in the network (through 

the Resilient Event Bus or the Event Processing module). As a result, AMSEC produces attack graphs 

and calculates security metrics. 

Attack graphs can be used to refine Event Processing rules, and security metrics can be transferred to 

the Decision Support and Reaction (DS&R) component to form the list of recommendations to 

increase the security level. Since at this stage real-time mode is not required, the information flow can 

go through the Repository. 

- Exploitation stage 

There are several tasks performed by AMSEC at this stage: (1) attack graphs adjustment; (2) attack 

detection improvement by searching matches between real-time events and attack graphs; (3) security 

metrics evaluation and prediction of potential threats and attacks. 

AMSEC needs interaction with other components to fulfill these tasks. 

- Task 1 (attack graphs adjustment): AMSEC needs information about changes in controlled 

network. The Event Processing (through the Repository) is the source of this information. Thus, 

information on network changes comes to SG and MM that make changes in the network and 

malefactor models stored in Repository. After that AGG and SE recalculate stored attack graphs 

and security metrics basing on updated models. 

- Task 2 (attack detection improvement). It is assumed, that the Event Processing uses attack graphs 

to increase the precision of intrusion detection and to detect zero-day vulnerabilities. This data 

flow is not a direct, because not real (but near real-time) mode of AMSEC. Therefore information 

flow goes through the Repository. 

- Task 3 (security metrics evaluation, threat and attack prediction): in this task AMSEC interacts 

with the Predictive Security Analyzer (PSA). It should be noted that this information flow is not 

direct - both AMSEC and PSA are not real-time components, so flow goes through the Repository. 
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We assume that security metrics, produced by AMSEC, can be used in "on-if-do-why" chain and 

attack graphs can be applied in the PSA state model. Moreover the determination of malefactor 

transition through the attack graph can initiate the transition on the state graph and vice versa. The 

information from the PSA can be also used by AMSEC. 

 

4.3.3 Decision Support and Reaction  

The OrBAC model defines the security policy formalism, but it does not specify the way it should be 

implemented. The Decision Support and Reaction subsystem designs and develops an administrative 

tool based on the OrBAC model, which allows to consolidate the security policy through the different 

infrastructure’s components in an organization, and to configure automatically those components. This 

section describes the architecture of PyOrBAC, our implementation of the OrBAC-based Decision 

Support and Reaction subsystem. 

Architecture overview 

The proposed architecture follows a client-server model, as shown in Figure 13. The PyOrBAC 

Engine acts as a server that allows the centralization of the access control policy administration; and a 

set of agents ensures the policies configuration of the PyOrBAC associated components.  

DS&R agents were discussed earlier in Section 4.1.3: these components aim both at reconfiguring 

Policy Enforcement Points (PEP) components and at providing assistance to manage contextual 

information that is not natively handled by the PEP. The DS&R agent receives instructions from the 

PyOrBAC Engine. These flow down the infrastructure from the core to the edge, as depicted in Figure 

13.  
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Figure 13 - Decision Support and Reaction Component (DS&R) 



MASSIF - FP7-257475 

Architecture Document  

 
 

© 2011-2013 MASSIF Project  43/63 

PyOrBAC engine architecture 

PyOrBAC is an OrBAC-based security policy engine implemented in Python that aims at creating a 

centralized security policy infrastructure based on the requests received by the administrator. The 

implemented solution offers the following advantages: 

- It allows the security policy configuration of external systems called associated components (e.g., 

Apache, MySQL, LDAP, etc) from the PyOrBAC engine, which means that administrators do not 

need to know the configuration rules of other components; they only need to manage the 

PyOrBAC platform to configure all the security policies. 

- The administrator is able to easily identify the existence of conflicts among rules. For instance, it 

would not be possible for the administrator to detect that one security policy is affecting LDAP 

and Apache if he had to manually configure each infrastructure. In contrast, by configuring the 

security policies through PyOrBAC, the system automatically detects and informs the 

administrator of the existence of a conflict before apply it.  

- Security policies are dynamically configured through the use of contexts, which allow the system 

to react more rapidly to any change (e.g., intrusion attempts, attacks). It is therefore necessary to 

clearly define the contexts and the monitoring system in order to properly detect the context 

changes thus allowing PyOrBAC to execute the respective changes in the configuration.  

- All the new generated security rules can be applied simultaneously to all the components 

associated to the organization. For this, PyOrBAC broadcasts the new rules so that all the 

components change the configuration accordingly.  

- PyOrBAC is able to identify pre-existing configurations and save them in its repository so that the 

engine knows all the security policies of a given organization in order to validate them and detect 

conflicts. For instance, let us suppose that LDAP and MySQL have already their own security 

policies, PyOrBAC should be able to detect and store them in its repository so that every time the 

administrator wants to configure a new policy, PyOrBAC can verify first, that the policy has been 

already created and second, that the new policy does not create any conflict with other existing 

policies.  

The PyOrBAC engine consists of five modules: Management, Compiler, Security Policies, Validation 

and Deployment. Further details about the functions of each module will be provided in.[12]  

Interaction with other MASSIF components – operations (runtime) view 

In operation, the PyOrBAC engine expects to receive alerts in IDMEF format [5] , that is XML 

messages, over a stream interface. Four MASSIF components have been identified that provide such 

messages: 

- The Generic Event Translation (GET) component provides alerts that are directly usable by the 

PyOrBAC engine, provided that the appropriate configuration action has taken place (see next 

subsection), as this represents immediate and current threat information that needs to be mitigated. 

However, GET components are likely to provide high volumes of information, which feed the 

Event Processing module for correlation and as such a direct interface between GET and 

PyOrBAC is not desirable. 

- The Event Processing (EP) component provides correlated events and alerts that are stored in the 

Repository. These are directly usable by the PyOrBAC engine, which gets them from the 

Repository, provided that the appropriate configuration action has taken place (see next 

subsection). As the EP engine provides correlated, high-density information, it is the preferred 

alert stream interface to the PyOrBAC engine. 

- The Predictive Security Analyzer (PSA) component provides alerts that are also usable by the 

PyOrBAC engine. These events are also stored by the PSA in the Repository and made available 
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to the PyOrBAC engine, provided that the appropriate configuration action has taken place (see 

next subsection), and that the evaluation of the change of security state takes into account the fact 

that contexts may be cancelled if the prediction of security state change is invalid. This requires a 

manual parameterization of the PyOrBAC engine.  

- The AMSEC component provides alerts that are usable by the PyOrBAC engine. These events are 

also stored by the AMSEC in the Repository and made available to the PyOrBAC engine, 

provided that the appropriate configuration action has taken place (see next subsection), and that 

the evaluation of the change of attacker posture takes into account the fact that contexts may be 

cancelled if the prediction of attacker posture change is invalid. This requires a manual 

parameterization of the PyOrBAC engine. 

Interaction with other MASSIF components – configuration view 

In order to properly configure the PyOrBAC engine, there is a need for a mapping between certain 

alert parameters (typically the IDMEF Alert.Classification field) and security policy contexts. The 

current need is limited to a common dictionary of signature “words”, so each of the GET, CEP, PSA 

and AMSEC modules should include the ability to list the Alert.Classification.text information that 

they can generate. 

In addition, and at a later stage, the countermeasure evaluation component can be coupled with PSA 

and AMSEC. The objective of this coupling is to shift the configuration of the costs used in the 

computation of the Return on Response Investment (RORI) index (see [12] ) from design time to run-

time.  

 

4.3.4 Visualisation 

The Visualization component is responsible for displaying, managing and responding to different 

information (e.g: events, situations, alarms), providing a convenient and effective GUI to interact with 

some MASSIF components, visualizing data and fulfilling management and administrative tasks. 

The main inputs for visualisation are directed from Repository or from application services through 

the Repository or directly from other MASSIF components: alerts from Decision Support and 

Reaction (DS&R) component through Repository; security metrics and simulation results, generated 

by Model Management component (PSA and AMSEC) and available from Repository; settings of 

AMSEC and PSA components; security events, generated by Event Processing and available from the 

Repository; access to historical data historical analysis and produce statistical reports. 

Besides, it provides a convenient user interface to: to schedule tasks and edit rules for Model 

Management component and DS&R; to configure security policies and perform repository 

maintenance; to create and configure security models (event/process models, attack/attacker models, 

simulation models). 

The following architecture of Visualization component (Figure 14) is considered. It can be viewed as a 

simple two component model which includes User Interface and Control Middleware.  

The User Interface is separated from the Control Middleware to facilitate the development of different 

user interfaces (starting with simple command line finishing with rich user interface).  

- In the general case, User Interface is a simple main window form of an application.  

- The Control Middleware consists of two main modules: Plug-ins Manager and Visual Component 

Controller.  

• Plug-ins Manager interacts with other components using plug-in mechanism. It is 

responsible for registering, managing, including or excluding different plug-ins.  
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• Visual Component Controller is responsible to manage graphical items including 

start/stop visualization threads (pipelines) on demand of requests both from Plug-in 

Manager and users. Visual Components provide a set of graphical primitives (charts, 

treemaps, graphs, etc) to process input data and render it. 

 

 

Figure 14 - Visualization Component  

 

The following example illustrates general principle of Visualization Tool functioning. The user via 

User Interface generates the request to some MASSIF component that is managed by the 

corresponding plug-in. The plug-in forwards the request to the MASSIF component and then receives 

the generated response using the MASSIF component API. The plug-in interface allows this plug-in to 

communicate with graphical items via the Visual Components Controller, selecting the adequate 

primitive (e.g., a net graph), producing the needed graphical presentation (picture). 

 

4.3.5 Repository 

The Repository offers a general storage service, safeguarding data and allowing indirect 

communication between different MASSIF components. The repository is implemented according to 

the SOA principles [4] . The advantages of this architecture are the flexibility and loose coupling of 

components, which provides high scalability and extensibility of the system. Figure 15 shows the 

general architecture of Repository (CRUD designates basic operations Create, Read, Update, and 

Delete). 

In accordance with the main principles of SOA, the MASSIF repository architecture can be divided 

into Web services API, Repository services layer and Repository storage layer, as detailed in [4]  and 

summarized here. In addition to these layers, an access control layer provides the necessary 

authorization rights [4] . The Repository manipulates the following types of information: Events; 

Incidents; Alarms; Decisions; Vulnerabilities; Attack graphs; Users (for RBAC) and others. 
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Figure 15 - Repository architecture 

 

The Web services API is an interface for interaction with application layer components.  

The Repository services layer allows abstracting the interaction between one or more objects, 

workflows and services through an intermediate interface API. It consists of the presentation level and 

data access level: presentation level covers everything that is related to interaction with the MASSIF 

components; data access level interprets the queries for data retrieval, received from MASSIF 

components in the language notation used by the underlying database management system (DBMS).  

The Repository storage layer includes generic data and data related to different MASSIF application 

services: event data, AMSEC data, PSA data and DS&R data. 

For full support of different information models being developed in the MASSIF, hybrid approach in 

the repository storage layer is used [4] . This approach combines the possibilities of relational DBMSs, 

XML-based repositories and triplet stores. Triplet store provides an ontological representation of the 

data model, and uses the logical reasoning to select the data. 

One of the most important components of Repository storage layer is the event data. It has very strong 

scalability requirements due to it should be able to store not only the output events that can be a small 

load, but also the input events from the edge services that can be a very high load. For this purpose, 

the event repository will be parallel-distributed and will use a state of the art cloud data store solution 

providing high scalability. To store AMSEC data we intend to use all three kinds of data 

representation (relational, XML-based and triplets). Predictive Security Analyzer data and Decision 

Support and Reaction data will be stored in relational and XML-based stores. 
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5. Resilience Mechanisms 

This section gives an overview of the resilience aspects of the MASSIF architecture. As such, we 

discuss the motivation, requirements and mechanisms behind one of the objectives of this architecture: 

to provide seamless integration of resilience into distributed SIEM systems, with the aim of ensuring 

several levels of security and dependability in an open, modular and versatile way.  

 

Some of the features that characterize the infrastructures on which these SIEM systems may be used 

are the following: 

- The infrastructures can be highly distributed and large-scale, both in a geographical sense and with 

respect to the number of entities involved;  

- The infrastructures are heterogeneous, composed by end systems from possibly many vendors, 

with very diverse software and operating systems;  

- The networks interconnecting the end systems can be of different kinds, from more confined and 

controlled ones to essentially open, generic and non-structured networks like the Internet.  

On the other hand, a diagnosis of the shortcomings of current SIEM systems, which led in part to the 

proposal of the MASSIF architecture, can be described succinctly by the following: 

- inability of encompassing ICT infrastructures with global deployment, since they normally 

consider events from single organizations;  

- incapability of providing a high degree of trustworthiness or resilience in event collection, 

dissemination and processing, thus becoming susceptible to attacks on the SIEM systems 

themselves; 

- centralized rule processing, making scalability difficult by creating bottlenecks and single points 

of failure.  

- lack of reaction capabilities (current SIEMs being “detect only”, it is difficult to take action on the 

information they provide); 

This scenario points to three main issues:  

- the monitored environments are increasingly exposed to threats, rendering the monitoring task 

more complex; 

- this dramatically increases the dependence on the monitoring systems to ensure secure and 

dependable operation of the monitored systems in real-time;.  

- the monitoring systems become a target of attack themselves, being prone to different sorts of 

failures. 

Since the SIEM subsystems that perform event collection, delivery and processing have today a highly 

distributed nature and operate in essentially the same environments as the monitored systems, they can 

also become targets of attacks and accidental faults. These problems are expected to become even 

more prevalent with the increasing inconspicuousness of computing systems and networks, and as 

security information and events start to concern not only common IT devices (e.g., firewalls, routers, 

application servers) but also critical information infrastructures, which for instance observe and 

control physical processes (e.g., a dam or a power plant).  

Therefore, it is important to improve the trustworthiness of SIEM systems by developing appropriate 

solutions to achieve resilience. We establish the rationale for the MASSIF resilient architecture 

through a list of propositions that state a set of required macroscopic properties of the system. In 

consequence, the reader and/or potential developer or user can get a clear view of what is behind the 

architectural options proposed for MASSIF resilience. Furthermore, since the architecture will be 
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developed having in mind the requirements imposed by the above-mentioned propositions, one can 

gain confidence that the architecture and respective algorithms and middleware are bound to satisfy 

the imposed requirements: 

- Proposition 1: Complement classical security techniques with resilience mechanisms  

• Classical security techniques are largely based on prevention, human intervention and 

ultimately disconnection. There is thus a need for achieving tolerance, automation and 

availability, both under attack and in the presence of major accidents [18] .  

- Proposition 2: Promote automatic control of macroscopic information flows  

• There is a growing need for SIEM systems to encompass multiple ICT infrastructures, 

achieving a global span. In such complex, large-scale, multi-tenant and distributed 

infrastructures, any security solution, to be effective, has to involve automatic 

mechanisms to secure the macroscopic command and information flows between the 

major modules, such as: between layers of different trustworthiness, from unprotected 

edge layers up to the more protected core realm; amongst peer layers implementing 

resilience-improving mechanisms.  

- Proposition 3: Reconcile resilience with legacy preservation  

• One should modify and/or interfere with the monitored system (payload) the least 

possible. As such, the SIEM system should preferably be deployed as a sort of overlay 

infrastructure, a system functioning in parallel with the payload system, with hooks to the 

latter at appropriate points. Likewise, resilience solutions should, in turn and as much as 

possible, be transparent to the functionality of the SIEM system and, in consequence, to 

the payload system. On the other hand, those solutions should be open and configurable, 

facilitating the porting to a diversity of SIEM systems.  

- Proposition 4: Avoid single points-of-failure  

• This objective gains paramount importance with the increasing dependence on the 

availability of SIEM systems to secure the operation of on-line, often 24x7, large-scale 

infrastructures. As SIEM systems become more sophisticated and effective, there is an 

obvious trend for them to become targets of attack (neutralizing the sentinel) before direct 

attacks are staged on the payload systems. Avoiding this problem is one major reason for 

the objective, in MASSIF, of making the monitoring infrastructure itself resilient to direct 

attacks. Redundancy and diversity both purposely introduced and derived from the sheer 

infrastructure richness and complexity, will be used to devise fault and intrusion tolerance 

mechanisms, keeping the system working despite the failure of individual components.  

- Proposition 5: Secure timeliness in the presence of faults and attacks  

• Reconciling security with timeliness is a hard problem. Synchronous (or real-time) 

systems offer an additional attack plane to adversaries, where they can attempt to 

compromise the ’values’ in the system, but also the ’time’ properties. This is why security 

solutions in distributed systems tend to be asynchronous. In systems providing a real-time 

view, and requiring real-time capability of reaction, achieving security at the cost of 

timeliness would be counterproductive. As such, one fundamental algorithmic and 

architectural challenge will consist in simultaneously preserving security and timeliness 

properties of the information flows coming from the collection points (the edge) to the 

processing engines (in the core) and vice-versa. 

The intent of this section is to describe the main techniques that are being explored in MASSIF to 

improve its resilience. In our approach to increase resilience, we will employ prevention techniques 

whenever possible to deal with various types of threats, such as eavesdropping and/or tampering of 

messages. For instance, traditional cryptographic solutions based on in symmetric encryption and 

Message Authentication Codes (MAC) are highly effective at averting this sort of attacks, and 
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nowadays they provide efficiency levels that can address information flows with huge amounts of 

events. However, some more severe attacks are hard to solve with prevention solutions alone (e.g., an 

intrusion in the core-MIS machine), and therefore, it advisable to employ mechanisms to achieve 

tolerance [18]  [19] . In short, instead of trying to prevent every single intrusion or fault, they are 

allowed, but tolerated: systems remain to some extent faulty and/or vulnerable, attacks on components 

can happen and some will be successful, but the system has the means to trigger automatic 

mechanisms that prevent faults or intrusions from generating a system failure. Additionally, while 

disconnection can be an effective solution to avoid the propagation of attacks, it may imply significant 

performance degradation and may have very negative and costly implications to service provision. It is 

thus important to seek for solutions that allow availability under attack. 

Given that, as we have assumed earlier, different Facilities/Networks of the payload and the SIEM 

system may have different levels of trustworthiness, and that distinct application and systems will 

require different levels of trust, the architecture must allow for an incremental range of resilience 

solutions, in the interest of the best trade-off with performance, cost, or complexity. 

5.1 Attack Vectors 

This section analyses the susceptibility of the MASSIF architecture to faults and attacks, some of 

which of possibly large and/or uncertain magnitude. It is interesting to start by analysing what are the 

potential attack vectors, put in context with the MASSIF architecture, as depicted in Figure 16.  
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Figure 16 - Estimated attack vectors to the MASSIF SIEM architecture 

 

As shown in the figure (illustrated by arrows), in such a distributed and large-scale architecture, there 

are obviously several attack vectors: 

- sensing flow integrity, which typically uses standard protocols (arrow 1) --- e.g., tampering with 

the standard protocols conveying information (e.g., SYSLOG) from devices to the edge-MIS: 

interrupting, delaying, re-ordering, replaying, forging, etc.; 
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- edge-MIS, targeting its availability and/or the integrity of event collection and/or communications 

(arrow 2) --- e.g., disruption (DoS) or penetration attacks on edge-MIS: SIEM services and/or 

communication protocols; 

- MIA, with the objective of attacking its availability and/or the integrity of remote event collection 

and/or MIA-to-MIS communications (arrow 3) --- e.g., disruption (DoS) or penetration attacks on 

device-resident MIA: SIEM services and/or communication protocols; 

- Event Bus, targeting its confidentiality, integrity and availability (arrow 4) --- e.g., tampering with 

the MASSIF protocols conveying information between MISs: interrupting, delaying, re-ordering, 

replaying, forging, etc.; 

- core-MIS, aiming at attacking its availability and/or the integrity of the protection service and/or 

the communications (arrow 5) --- e.g., disruption (DoS) or penetration attacks on core-MIS: SIEM 

services and/or communication protocols; 

- core systems, targeting their availability and/or integrity (arrow 6) --- e.g., disruption (DoS) or 

penetration attacks on core services (SIEM Engine, Historian, GUI, etc.); 

- auxiliary services, targeting integrity of interactions (arrow 7) --- e.g., disruption (DoS) or 

penetration attacks on auxiliary services. 

These attack vectors have to be prevented from compromising the correctness of the SIEM system, by 

employing the appropriate mechanisms and protocols that safeguard the operation of the nodes and the 

communications. These mechanisms and protocols will be implemented in middleware software that 

will offer primitives for the development of specific SIEM services. In this section, we discuss how to 

achieve integrity of the key component MASSIF Information Switch (MIS), and then we consider two 

important aspects of the middleware, namely the support for communication and event dissemination 

and storage of information. 

5.2 Incremental MIS Resilience 

In this section, we discuss techniques to improve the resilience of specific nodes of the architecture, 

such as the edge and core-MIS. The MIS can be built with incremental levels of resilience, depending 

on its criticality.  

The edge-MIS is the simpler instantiation, since it is placed at more locations on the data collector side 

and costs may be a concern. It receives information with a limited degree of trustworthiness, since it is 

produced by untrusted machines and mainly conveyed by standard protocols. The edge-MIS is located 

on the sensors side, it is normally single-homed, but in some cases may be dual homed for protection 

of specific bulk and/or critical source traffic (i.e., IDS).  

The core-MIS is positioned on the core processing elements side, and it is normally dual-homed, to 

actively protect the core SIEM servers. It is also bound to have the most sophisticated resilience 

mechanisms, since it protects key core servers. 

A key issue is the resilience of the MASSIF nodes (MIS) against direct attacks. We give a few 

examples illustrating the possible MIS construction methods, to achieve the desired incremental range 

of resilience: 

- Ruggedised simplex: single ruggedised machine, where various intrusion prevention techniques 

are applied to increase security (e.g., a better identification and authentication scheme; careful 

configuration of network services and removal of unnecessary applications);  

- Loosely coupled duplex or N-plex: the service is replicated in two or more machines loosely 

coupled in the network;  
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- Closely coupled N-plex: the service is replicated on N machines connected with a private 

broadcast network;  

- Tightly coupled N-plex: the service is replicated in a virtualized node running N diverse guest 

operating systems (to prevent common vulnerabilities);  

- Twin quad: two replicas of virtualized nodes, each one running four virtual guest operating 

systems (to guarantee Byzantine fault tolerance and availability in case of a node crash).  

Resilience of the time related mechanisms is also of great interest, since the MASSIF global time base 

is implemented by the MIS/MIA. Data-layer services implemented in the edge-MIS/MIA, as well as 

the Even-layer services, have access to local clocks which are collectively synchronized, providing a 

global and trustworthy notion of time.  

Details of implementation are outside the scope of this paper, but this can be achieved either through 

the use of external synchronization to an absolute reference (e.g., GPS time synchronization) or 

through internal synchronization using clock synchronization protocols such as the Network Time 

Protocol (NTP), highly-fault-tolerant versions existing as well. One important implication of assuming 

the existence of a global and trustworthy notion of time is that time stamps can be used, in general, to 

infer about the timeliness of events and about their ordering, which is very important in the context of 

MASSIF, since it allows faithful correlation of events in the SIEM. The ability to correctly time-stamp 

events at the MIS/MIA is all the more important because, as assumed (see Section 2.2): some sensors 

at the edge layer may not have access to local clocks (e.g., physical sensors); some sensors with local 

clocks may exhibit poor synchronization, or be vulnerable to timing attacks. 

5.3 Event Bus Resilience 

The communication among the MIS plays a fundamental role in the MASSIF resilience architecture. 

This feature is responsible for delivering events from the edge services to the core SIEM correlation 

engine despite the threats affecting the underlying communication network. To give this kind of 

guarantee we will employ application-level routing strategies among the MIS nodes, in such a way 

that they form an overlay network able to deliver messages in a secure and timely way. Overlay 

networks have been used as mechanisms to implement routing schemes that take into account specific 

application requirements [20] . In the MASSIF resilience architecture we want to employ overlay 

networks to create redundant network-agnostic channels for timely and robust event transport from the 

edge sensors to the core event correlation engine. There are two thus main requirements on the inter-

node MASSIF communication middleware.  

First, timeliness: messages should be transmitted respecting some delivery deadline. The objective is 

to make the events be processed at the correlation engine while they are (temporally) valid, which 

requires the communication subsystem to enforce timeliness properties of the communication. One 

should thus assume that there is eventual synchrony, that is, assume that message transmission latency 

is bounded. However, we must note that the underlying infrastructure can be the target of performance 

instability, or of attacks (is not trusted by default) which impact on the coverage of those latency 

assumptions. Although it may be difficult to state the exact bound, specific bounds have to be assumed 

at run-time, which means that the network will alternate between synchronous and asynchronous 

behavior, which is undesirable for our objective. Overlay networks might provide the necessary path 

redundancy to provide for timing fault-tolerance. Unfortunately, most overlay networks do not have 

this objective, and therefore, we will develop specific solutions to enforce these guarantees in the 

MASSIF SIEM system. In the past, some approaches had the aim of improving the end-to-end 

communication latency, but not of attaining application-defined maximum delays (e.g., [21] [22] ). 

Recently, a timeliness-aware application-level routing solution called Calm-Paranoid (CP) was 

proposed [23] , using overlay/multi-homing techniques. Although the CP algorithm solves in part the 

timeliness requirement of the communication, it was designed considering a static set of nodes that 

only fail by crashing; therefore, it can not address the case where some nodes might be compromised 
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by a malicious adversary (i.e., nodes that are subject to Byzantine failures). We will build on these 

results. 

Second, robustness: the middleware should tolerate malicious intrusions in some of the nodes, such as 

in data forwarding devices (e.g., routers) and eventually in a subset of the MIS. Our initial approach to 

solve the problem is to enhance the CP algorithm with Byzantine-routing capabilities [24] [25]  and 

network coding techniques [26] . The idea is to send each message through 1 to 2t + 1 different paths 

chosen based on how disjoint they are (i.e., minimizing the number of common nodes among them) 

and their timeliness (their expected delivery time must be smaller than the message delivery deadline), 

being t a bound on the number of channel faults during the message transmissions. In order to avoid 

the bandwidth overhead of sending the same requests more than once, one idea is to use network 

coding algorithms to generate message blocks to be sent using different channels. With this technique, 

each channel will only transmit a fraction of the message size and a receiver will be able to recover the 

message as long as it receives at least a subset of the blocks and decode them. 

 

5.4 SIEM Core Protection 

The MASSIF architecture allows for multiple strategies for protection of the core components 

executing application layer services. 

The simplest one is perimeter defence, by isolating the core components within trusted intranets, 

isolated from the outside by core-MIS. Actually, this is the baseline protection offered in the 

architecture, as depicted earlier in Figure 3. This kind of protection is quite effective, since all the 

application subsystems are inside a perimeter which only communicates with the outside through a 

MIS, in two ways: with the Resilient Event Bus; and with auxiliary systems. 

The Resilient Event Bus is an overlay communication subsystem internal to the MASSIF SIEM and 

thus itself protected, much in the sense that secure VPN (Virtual Private Networks) are. Auxiliary 

systems are any external systems accessed by the core application layer services (e.g., email, web, 

corporate servers) resident in networks alien to the MASSIF SIEM, either operated by the monitored 

system owners or by SIEM managed service subcontractors. They are considered untrusted in the 

SIEM fault/threat model, and as such traffic with them is carefully filtered by the core-MIS.  

We also recall a second pillar of perimeter protection: besides executing protection functions, the core-

MIS is itself built with resilience enhancing mechanisms, as discussed in Section 5.2, to protect it from 

direct attacks. 

It should be noted that the publish-subscribe nature of the Resilient Event Bus communication model 

extends the modularity of the edge subsystems to the core systems (in fact, suggested in Figure 3): 

application servers may actually reside in more than one protected intranet, offering a multitude of 

deployment and server placement strategies. 

Besides this baseline protection, SIEM core resilience can be enhanced through more sophisticated 

forms of protection, namely by mechanisms providing forms of defence in depth, for example, 

solutions featuring fault and intrusion tolerance of application servers themselves. Such solutions 

would for example provide resilience against insider attacks. Though they are not the focus of the 

instantiations foreseen for the project, several of the mechanisms advanced in Section 5.2 might be 

reapplied successfully to achieve fault and intrusion tolerance of core servers. 
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5.5 Resilient Storage 

The storage solutions to be deployed in the MASSIF architecture have several purposes, requiring 

different levels of resilience.  

In this section we are concerned with a specialised kind of storage: those units dedicated to archival of 

critical security information and events, requiring properties like integrity, confidentiality and 

unforgeability. Furthermore, integrity should be strong, that is, not only detecting, but also preventing 

successful attacks to integrity, so that information cannot actually be destroyed. This requires a 

combination of security and dependability, and calls for example for intrusion-tolerant techniques in 

the construction of the resilient storage units. One of the obvious uses of such resilient storage is to 

archive important security information and events in a way justifiably usable for criminal/civil 

prosecution of attackers after a security breach. Those attackers may include privileged users 

(insiders), with ample access to internal systems. The need for going beyond classical security 

techniques based on prevention is that erased log records are of no use, even if they were strongly 

signed and/or integrity protected before erasure.  

Techniques like replication, diversity management, coding and threshold cryptography will be 

employed to guarantee unforgeability of the stored information, and to guarantee that the storage 

system itself is tolerant to faults and intrusions. Additionally, traditional techniques such as access 

control need to be used to ensure that certified records of security breaches will be made available 

only to authorized parties, based on existing and upcoming regulations.  

The architecture of the Resilient Storage is illustrated in Figure 17. The figure also illustrates the 

interactions with other MASSIF components. The Processing Engine is the main MASSIF component 

in charge of feeding the resilient storage. The Processing Engine is able to process a massive amount 

of events per second e.g. 100s of thousands of events per second. From this huge pile of security 

events, only a few are of interest for forensic analysis. So only the events which are generated during a 

security breach are sent to the Resilient Storage by the Processing Engine to be stored for the potential 

forensic analysis (at a later time). We refer to this design approach as to the “Least Persistence” 

principle. In order to store data, the Resilient Storage exposes a very simple interface (very much like 

a “write” command), that hides its internal - sophisticated - mechanisms. In order to provide extreme 

unforgeability guarantees, data is not signed by means of standard techniques. Instead, a threshold 

cryptography mechanism is used.  In a nutshell, threshold cryptography involves the distribution of 

secret key into different shares. The key is divided into shares in such a way that a certain number of 

shares, when combined, yield the original secret but corrupt share holders less than this certain 

threshold cannot calculate the secret. Also, the shares do not contain or reveal full or even partial 

information about the secret key that may be helpful to guess the secret. In this way the system is 

made Intrusion and Fault Tolerant, since if some of the shareholders are compromised or become 

corrupt, the system continues to provide its functionalities correctly.  

The process for creating a forensic record, i.e. an unforgeable record related to a security breach is as 

follows. The event related to a security breach is fed to all the individual threshold cryptography units, 

i.e. to all participants of the threshold cryptosystem. Each unit implements a hash function which 

calculates the digest of the security event whose unforgeability is required. The hash function accepts 

a variable size message as input and produces a fixed size output. The output of the hash function goes 

as input to an encrypt function which encrypts the message digest with the secret share as the 

encryption key, i.e. produces a cipher which is called a partial signature of the security event. A 

component, called combiner, is responsible for assembling all partial signatures received from 

participants of threshold cryptosystem to generate a full signature. The full signature is attached to the 

original event, thus forming a signed security record, i.e. a forensic record. Forensic records are 

eventually stored using a persistent storage facility. They will be made available to application level 

services implementing forensic features. In order to read the stored messages a “read” command is in 

charge of authenticating the reader and of retrieving the stored data. 

 



MASSIF - FP7-257475 

Architecture Document  

 
 

© 2011-2013 MASSIF Project  54/63 

 

Figure 17 - Architecture of the Resilient Storage 

Replication and diversity are employed in each processing stage to further improve the Resilient 

Storage tolerance to faults and intrusions. In particular, the threshold-based signature scheme, the 

combiner, and the storage are all replicated via a set of software replicas, which are deployed on a set 

of independent servers, implementing diversity at several architectural levels (i.e. hardware, Operating 

System, system software, and more). 

The signed security events are stored according to the occurrence time, making it easy to access the 

signed events corresponding to a particular security breach. The backup Storage ensures the 

availability and resilience of signed security events in case of attacks of storage systems. 
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6. MASSIF Architecture vs. Existing Systems 

Security Information and Event management systems have existed for about 10 years. Even though 

they still can be improved, they are being commercially successful today, which shows that designing 

an entirely new SIEM system from the ground up would be an enormous effort for little benefit. 

Instead, the MASSIF project has chosen to partner with two prominent open source SIEM, OSSIM 

and Prelude, to reuse existing functions provided by these SIEM implementations and to improve on 

the ones that make the most sense. The open-source choice (even though we are also looking at 

commercial SIEM environments) has been made because it eases analysis and integration. This section 

will thus focus on the MASSIF components that could supplement, improve or replace existing SIEM 

functions with advanced functionalities. This section will focus on malicious activity detection, 

infrastructure resilience, alert correlation, decision support and counter-measures, which are the key 

contributions of MASSIF to existing SIEMS. 

6.1 OSSIM 

Typical OSSIM installations share many concepts with the design of MASSIF. It’s common sense to 

collect events at the edges and transport events up to the center where the SIEM collects events, 

correlates, analyses etc. 

We will discuss some analogies and differences between OSSIM and MASSIF in this chapter, based 

on functionality and component. 

6.1.1 Functional view 

Translation Layer 

The MASSIF translation layer is responsible for the conversion of events from event emitters (usually 

at the edge infrastructure) to a generic event format. This conversion or in the OSSIM case 

normalization is done directly on OSSIM sensors. The resulting format is the OSSIM message format, 

which is sent to an OSSIM server component for further processing. 

Normalization 

Normalization in the MASSIF architecture is planned to be done on the Edge MIS through the GET 

architecture. 

The MASSIF GET architecture is very similar to the architecture of OSSIM data sources (often 

referred as plugins). OSSIM agent features pluggable parsers (analog to the Adaptable Parsers in the 

MASSIF architecture) that compute specific events sent from any attached system and translates 

(normalizes) those events to the OSSIM message format, which can then be forwarded to the next 

destination, which is typically a OSSIM server instance. 

Right now OSSIM server does not feature a automatic recognition of the input data source as 

described in the MASSIF architecture via an event dispatcher. A manual recognition is implemented 

and is typically done when setting up the infrastructure. This approach has some tradeoffs, but 

simplifies normalization and decreases complexity in the running system. 

Automatic event dispatching is not trivial and may not always produce the right dispatcher decision 

(e.g. duplicate process names in syslog sources that are used to make a dispatch decision). 
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Correlation 

Correlation in MASSIF is performed by the Complex Event Processing system, correlation logic is 

implemented by CEP queries. 

OSSIM does not implement elastic correlation in a cluster of nodes. Correlation is happening on single 

OSSIM servers. No precorrelation is done on sensors. 

The OSSIM correlation is based on correlation directives, that are modelled in XML files. As part of 

the MASSIF project the translation of OSSIM correlation directives into Complex Event Processing 

queries is part of WP 3.4.1.  

Aggregation 

Aggregation in the OSSIM architecture is typically happening on a SIEM server (OSSIM server). 

OSSIM sensors do not preaggregate any events. This happens only on final destinations where 

correlation is done and typically only for events that have a calculated risk equal to or greater than 1. 

Generic events dissemination 

OSSIM does not provide a generic events dissemination mechanism as described in the infrastructure 

services section of the MASSIF architecture. The dissemination in OSSIM is done solely based on 

configurations. 

Decision support and reaction system 

A decision support and reaction system is not implemented in OSSIM. OSSIM features a action 

mechanism that is attached to policies. A policy can have any number of attached actions. A policy 

can be limited IP addresses, network assets (Hosts, Hostgroups, Network Groups, Networks). A policy 

can also be limited to a specified time range (e.g. Mon-Fri, 8-5) and different data sources or a set of 

data sources.  

Actions include opening a ticket in the internal ticketing system, sending an email with the event data 

or executing a program on the SIEM server. This functionality can be used to provide a reaction to 

specific events, event groups, events on single hosts or hostgroups etc (e.g. trigger a script to lock an 

attacking IP address out of the network on the firewall, shut down a switch port). There is no 

framework and no enforcement or limitations on what the specified command can do. 

6.1.2 Per component view 

MASSIF information switch (MIS) 

The MASSIF information functionality can be seen as a hybrid of an OSSIM agent and a OSSIM 

server residing on the same platform. 

The entry point for security events is usually an OSSIM sensor running an agent, that collects and 

normalizes data from various event emitters. That data will then be normalized and delivered to one or 

several OSSIM servers (an OSSIM server can be installed on the same system as the sensor). After the 

event is received the server will take a policy-based decision how to compute the incoming event. An 

event can be correlated and stored locally, can be dropped from further processing, etc. 

A traversal of events through a hierarchy of SIEM servers (MASSIF MISes) is not provided in the 

open source OSSIM server. 
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MASSIF information agents 

OSSIM does not know the concept of a agent running on the payload machine. However we make 

heavy use of e.g. HIDS agents (OSSEC) that run on various payload machines and deliver security 

events in OSSEC format to the OSSIM agent, which normalizes into OSSIM message format. 

Generic Event Translation Platform 

As explained in Section 4.1.1 (Normalization) the generic event translation GET finds it’s counterpart 

in the OSSIM agent with its plugin architecture. The adaptable parsers very much do the same as the 

OSSIM plugins do. 

The GET manager behaves much like the OSSIM agent. It collects logs, decides on the adaptable 

parser to use and normalizes the event. The GET manager also features automatic recognition of log 

sources, which the OSSIM agent right now does not do. The OSSIM agent has similar controls as the 

GET manager to activate and deactivate plugins from the framework. 

The MASSIF event manager functionality is also included in the OSSIM agent, if not provided by the 

parsers the OSSIM agent will prefill fields with reasonable data (e.g. timestamps, sensor information 

etc.). The agent will also take care of timely delivery and buffering in case a upstream infrastructure 

component is not connected. Events will be buffered until the remaining disk space is less than or 

equal to 5% of total capacity. After that limit events will be discarded. 

Resilient Event Bus 

In the OSSIM architecture the concept of a Resilient Event Bus is not existing. Communications are 

modelled in policies and configuration files. The event flow is not based on a publish-subscribe 

pattern, but on the wired policies and configuration files. 

Core MASSIF services 

The core MASSIF services include the Complex Event Processing and the decision support module. 

OSSIM does not provide a decision support functionality. 

The Complex Event Processing engine finds its counterpart in the correlation engine that is built into 

OSSIM server. Correlation directives are written in a XML syntax and deployed on the OSSIM server. 

A correlation directive is triggered if the initial condition for the correlation directive is met. All 

subsequent events are then checked if they match the current hierarchy in the correlation process. If 

the correlation reaches the final rule and matches that rule a event is generated. 

Repository 

The repository in OSSIM is the OSSIM event storage engine, a database of all security events, alarms, 

configurations and all metadata. OSSIM does not have the concept of a short or long-term storage as 

described in Section 4.3.5. Neither does OSSIM feature an API to that information. 

6.2 Prelude 

We draw in this section an analogy between MASSIF architecture and components, and their Prelude 

counterparts. In fact, although they may add new functionalities, or they may have a better 

performance and scalability, most of the MASSIF components have their counterparts in Prelude. This 

section compares those similar components. It shows the limitations of Prelude modules and motivates 

the need to replace these modules with new MASSIF components. 
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Figure 18 shows an example of a distributed Prelude architecture and we will point out the 

correspondences between different components in the following subsections. 

 

Figure 18 - Prelude Architecture with distributed Managers 

6.2.1 MASSIF Information Switch - Prelude Manager 

MASSIF Information Switches (MISes) correspond to Prelude Manager modules in the Prelude 

architecture. Just as in the MASSIF architecture, Prelude Managers can form a hierarchy that is similar 

to the hierarchy of edge and core MISes. Local Prelude Managers collect security events in a local 

domain and relay them to the core Prelude Manager. Internally the Prelude components use a binary 

representation of IDMEF [5] to exchange events and IDMEF corresponds to the MASSIF event 

format. Within a given domain, the local Prelude manager gathers events either directly from Prelude 

compatible sensors or indirectly using log and event parsing capabilities of the Prelude-LML 

component. 

6.2.2 Generic Event Translation Platform - Prelude LML 

Sensors connecting directly to the Prelude Manager use the libprelude library. It implements a set of 

functions required for these sensors to interface with the Prelude Manager. 

Sensors that do not use libprelude are coupled with a Prelude-LML, which translates their output to 

binary IDMEF, and forwards it to a Prelude Manager. Prelude-LML can be also used to process any 

other log files to translate all or selected log events to IDMEF alerts. The translation is based on rules 

that associate log fields to IDMEF elements and attributes. A set of predefined rules for various log 

files exists, and user-defined rules can be added. 

Prelude-LML reads logs from a file and doesn’t provide means for receiving remote logs. Thus it is 

either co-located with the data source or the log delivery to Prelude-LML is to be handled by other 

means (e.g. via syslog). 

Prelude-LML corresponds to the Generic Event Translation (GET) platform described in the MASSIF 

deliverable D3.3.1. Nonetheless, the GET platform offers more functionality than Prelude-LML, as 

summarized in Table 1. 

We thus expect an enhanced performance and scalability for event translation when replacing Prelude- 

LML with the GET platform. 
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Prelude-LML MASSIF Generic Event Translator 

Does not support event dispatching Dispatches events according to their format. 

Does not support event grammars. Handles event grammars and creates 

adaptable parsers. 

Does not support type recognition. Supports type recognition through the event 

dispatcher. 

Parallel parsing requires several LML 

instances 

Parallel event dispatching based on event 

format. 

Output only to a Prelude Manager Supports any output format whose grammar is 

defined. 

Table 1: Prelude-LML vs. MASSIF GET 

6.2.3 Resilient Event Bus - Prelude communications 

The MASSIF Resilient Event Bus is a publish-subscribe type bus connecting edge MISes to core 

MISes. The resilient MASSIF architecture enables redundancy over core MISes, thus withstanding 

single node failures. 

The Prelude architecture supports Manager redundancy (events can be sent to all n Managers every 

time or the sender can try the n Managers one at a time to find one that is available). The 

communication channel is point-to-point and uses a client/server model. 

All agents (i.e. Prelude-LML and compatible sensors) register themselves to their Prelude Manager, 

and in a hierarchy of Managers the lower level Managers register themselves at the upper level 

Managers. The registration process allows the exchange of public key certificates, which allows 

mutual authentication of sensor-Manager and Manager-Manager connections.  

All communications can be, and are by default, encrypted. Prelude thus guarantees the authenticity of 

the communication endpoints, and the confidentiality and integrity of the exchanged messages. 

6.2.4 Core MASSIF Services - Prelude Correlator, database and Prewikka 

Core MASSIF services mainly include the Complex Event Processing Engine (CEP) for alert 

correlation and the decision support module. The core MIS, which retrieves events from the Resilient 

Event Bus, relays these to the core MASSIF services for event processing. 

Prelude functions similarly. The central Prelude Manager collects events from local Managers. It 

persists these events into a database and forwards them to the Prelude Correlator. The communication 

between the central Prelude Manager and the core Prelude services (the Correlator and the database) is 

bidirectional: the central Manager pushes events into these components, but also receives correlation 

results and retrieves events from the database for the web-based visualization component called 

Prewikka. 

The Prelude Correlator module, illustrated in Figure 19, has an extensible architecture based on a set 

of correlation classes built with Python. As shown in Figure 19, the Prelude Correlator is conceived 

only to interface with the Prelude Manager. It registers to the Manager using the libprelude library. 

Events are sent to the Correlator in the IDMEF binary format that is supported by Prelude. The 

Correlator module builds internal data structures using those events, and then they are relayed to a 

plugin manager. The plugin manager applies each of the correlation plugins, which are implemented 
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as Python classes, to the IDMEF data structures. Prelude Correlator supports context-based 

correlation. A matching correlation class may thus trigger a new context that designates requirements 

to be satisfied by events sent through the Manager. Correlation plugins are independent, and so the 

Correlator design makes possible to define as many plugins as needed. Nonetheless, these plugins are 

checked sequentially for every incoming event. A high number of plugins thus degrades the 

performance of the Correlator. Compared to the CEP engine, Prelude Correlator is neither scalable nor 

elastic. 

 

Figure 19 - Prelude Correlator architecture 

 

At a high-level, the MASSIF CEP engine and the Prelude Correlator have similar functions: they take 

events as input, process (correlate) them and provide new correlated events as output. 

Prelude does not provide any kind of decision support mechanisms. As the alerts are stored in the 

Prelude database, an external component such as MASSIF decision support component could be 

provided access to the alerts, and use these for threat response. 

6.3 Potential MASSIF improvements 

From the systems comparison done in previous sections, the main improvements provided by MASSIF 

to existing open-source systems can be summarized in: 

• Generic Event Translator: adding pre-correlation capabilities and automatic recognition of the 

input data source. 

• Resilient Bus: contributing to the secure dissemination of events from the monitored systems 

to the core SIEM. 

• Complex Event Processing Engine: improving the scalability and elasticity of the correlation 

engine. 

• Decision Support and Reaction: enhancing the adaptation capabilities of the SIEMs through 

the automatic selection and implementation of countermeasures. 

Moreover, the complete set of alternatives are analysed in detail in [28] . 
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Annex A Detailed Mapping of Modules and Interactions vs. 

Workpackages  

 


