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Abstract. The systematic protection of critical information infrastructures requires
an analytical process to identify the critical components and their interplay, to de-
termine the threats and vulnerabilities, to assess the risks and to prioritise coun-
termeasures where risk is unacceptable. The abstraction-based approach presented
here builds on a model-based construction of an attack graph with constraints given
by the network security policy. A unique feature of the presented approach is, that
abstract representations of these graphs can be computed that allow comparison of
focussed views on the behaviour of the system. In order to analyse resilience of crit-
ical information infrastructures against exploits of unknown vulnerabilities, generic
vulnerabilities for each installed product and affected service are added to the model.
The reachability analysis now considers every possible choice of product, and so all
alternatives are evaluated in the attack graph. The impact of changes to security
policies or network structure can be visualised by differences in the attack graphs.
Results of this analysis support the process of dependable configuration of critical
information infrastructures.
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1 Introduction

Information and Communication Technology (ICT) is creating innovative systems and ex-
tending existing infrastructure to such an interconnected complexity that predicting the
effects of small internal changes (e.g. firewall policies) and external changes (e.g. the discov-
ery of new vulnerabilities and exploit mechanisms) becomes a major problem. The security
of such a complex networked system essentially depends on a concise specification of security
goals, their correct and consistent transformation into security policies and an appropriate
deployment and enforcement of these policies. This has to be accompanied by a concept
to adapt the security policies to changing context and environment, usage patterns and
attack situations. To help to understand the complex interrelations of security policies, ICT
infrastructure and vulnerabilities and to validate security goals in such a setting, tool-based
modelling techniques are required that can efficiently and precisely predict and analyse the
behaviour of such complex interrelated systems. Figure 1 shows an example of such an
infrastructure. Known and unknown vulnerabilities may be part of each of the connected
components and communication paths between them. Analysis methods should guide a sys-
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Fig. 1. Interplay of complex interrelated systems

tematic evaluation of such a critical information infrastructure assist the persons in charge
with finally determining exactly how to configure protection measures and which security
policy to apply.

A typical means by which an attacker (directly or using malware such as blended threats)
tries to break into such a network is, to use combinations of basic exploits to get more
information or more credentials and to capture more assets step by step. To find out if
there is a combination that enables an attacker to reach critical network resources or block
essential services, it is required to analyse all possible sequences of basic exploits, so called
attack paths.

For this type of analytical analysis, a formal modelling framework is presented that, on
the one hand, represents the information system and the security policy, and, on the other
hand, a model of attacker capabilities and profile. It is extensible to comprise intrusion de-
tection components and optionally a model of the system’s countermeasures. Based on such
an operational model, a graph representing all possible attack paths can be automatically
computed. It is called an attack graph in the following text. Based on this attack graph, it
is now possible to find out whether a given security policy successfully blocks attack paths
and is robust against changes in the given vulnerability setting.

One problem now is, that it is usually impossible to visualise an attack graph of a
realistic example directly because of the huge size. However, abstract representations of an
attack graph can be computed and used to visualise and analyse compacted information
focussed on interesting aspects of the behaviour. The impact of changes to security policies
can be visualised by finding differences in the attack graphs or the abstract representations
thereof.

This paper also shows, that abstract representations are very useful to analyse resilience
of critical information infrastructure with respect to attacks based on unknown vulnerabil-
ities because addition of unknown vulnerabilities results in very large attack graphs.

The subsequent paper is structured as follows. The modelling approach is described
in Sect. 2, while Sect. 3 presents an exemplary analysis. Section 4 presents an approach



to analyse resilience of critical information infrastructures against exploits of unknown
vulnerabilities. Section 5 gives an overview of related work. Finally, this paper ends with
an outlook in Sect. 6.

2 Modelling information infrastructures and threats

The proposed operational model comprises, (1) an asset inventory including critical network
components, topology and vulnerability attributions, (2) a network security policy, (3)
vulnerability specifications and exploit descriptions, and (4) an attacker model taking into
account the attackers knowledge and behaviour.

2.1 ICT network components

The set of all hosts of the information system consists of the union of the hosts of the ICT
network and the hosts of the attacker(s). Following the M2D2 model [1], products are the
primary entities that are vulnerable. A host configuration is a subset of products that is
installed on that host and affects is a relation between vulnerabilities and sets of products
that are affected by a vulnerability. A host is vulnerable if its configuration is a superset
of a vulnerable set of products and the affected services are currently running. In order
to conduct a subsequent comparative analysis of attack paths, an asset prioritisation as to
criticality or worth regarding relative importance of the assets is required.

2.2 Network security policies

The model of the network security policies is based on the Organisation-Based Access
Control (Or-BAC) model [2]. The advantage of this choice is, that it is possible to link the
policies in the formal model at an abstract level to the low level vendor specific policy rules
for the Policy Enforcement Points (PEPs) such as firewalls in the concrete ICT network.

To illustrate the modelling concepts described here, a small example scenario is given
in Fig. 2. Modelling concepts and typical analysis outcome will be illustrated using this
example scenario throughout the paper. One possible attack path is sketched in the scenario.

Following the Or-BAC-based concept, the network vulnerability policy is given at an
abstract level in terms of roles (an abstraction of subjects), activities (an abstraction of
actions) and views (an abstraction of objects). A subject in this model is any host. An action
is a network service such as snmp, ssh or ftp. Actions are represented by a triple of protocol,
source port and target port. An object is a message sent to a target host. Currently only
the target host or rather the role of the target host is used for the view definition here. To
specify the access control policy using this approach, permissions are given between role,
activity and view. For the example scenario the hostnames telework, attacker, nix host,
ms host, db server and portal are used. The roles of these hosts are given by the table in
Fig. 3(a). The policy permissions are defined by the table in Fig. 3(b).

Mobile components. To model mobile components that can transport malware such as
blended threats from one network zone to another, it is convenient to allow a host to play
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Fig. 2. ICT network and vulnerabilities

different roles. For example in Fig. 3(a) the host telework that plays the role telework host
can additionally be permitted to play the role intern host. In this case an attack path could
cross the zones from telework host to intern host without any restrictions by the network
security policy. Similar problems exist in infrastructures with mobile components such as
the example scenario shown in Fig.1.

2.3 Vulnerabilities

Vulnerability specifications for the formal model of the example scenario are derived from
the Common Vulnerabilities and Exposures (CVE/CAN) descriptions. The MITRE Corpo-
ration provides a list of virtually all known vulnerabilities (http://www.cve.mitre.org/).
The CVE name is the 13 character ID used by the CVE standards group to uniquely identify
a vulnerability. Additional information about the vulnerabilities also covers preconditions
about the target host as well as network preconditions. Furthermore, the impact of an ex-
ploitation of a vulnerability is described. The specifications for the formal model of the vul-
nerabilities additionally comprise the vulnerability range and impact type assessments pro-
vided by the National Institute of Standards and Technology (NIST) (http://nvd.nist.gov/).
Of course, other kinds of vulnerabilities could be added to the model in a similar manner.

Vulnerability severity. The Common Vulnerability Scoring System (CVSS) [3] provides
universal severity ratings for security vulnerabilities. These ratings are used in the model as
an example for a measure of the threat level. Another example for such a measure is the met-
ric used by the US-CERT (cf. http://www.kb.cert.org/vuls/html/fieldhelp#metric).



Role Hosts

internet host attacker
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telework host telework
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(a) Roles

Role (source) View (target) Activity (service)

internet host internet host any activity
any role dmz host ssh
any role dmz host smtp
dmz host intern host ssh
intern host any role net
intern host internet host ftp
intern host internet host rsh
intern host dmz host ssh
db host production host rpc
teleworker host dmz host any activity

(b) Network security policy

Fig. 3. Roles and network security policy

These measures are based on information about the vulnerability being widely known, re-
ported exploitation incidents, number of infected systems, the impact of exploiting the
vulnerability and the knowledge and the preconditions required to exploit the vulnerability.
Because the approximate values included in those measures may differ significantly from
one site to another, prioritising of vulnerabilities based on such measures should be used
with caution.

To have a vulnerable product installed on some host, does not necessarily imply, that
someone can exploit that vulnerability. A target host is configured vulnerable, if (1) the
target host has installed a product or products that are vulnerable with respect to the
given vulnerability, and (2) necessary other preconditions are fulfilled (e.g. some vulnera-
bilities require that a trust relation is established as for example used in remote shell hosts
allow/deny concepts).

The second precondition to exploit a vulnerability is, that the target host is currently
running the respective products such as a vulnerable operating system or server version. If a
user interaction is required this also requires that the vulnerable product is currently used
(e.g. a vulnerable Internet explorer).

The third necessary precondition is, that the network security policy permits that the
target host is reachable on the port the vulnerable product is using from the host the
attacker selected as source.

2.4 Attacker profile

The knowledge of exploits and hosts and the credentials on the known hosts constitute
an attackers profile. Knowledge about hosts changes during the computation of the attack
graph because the attacker might gain new knowledge when capturing hosts. On the other
hand, some knowledge may become outdated because the enterprise system changes ip-
numbers or other configuration of hosts and reachability. In case a vulnerability is exploited,
the model has to cover the effects for the attacker (e.g. to obtain additional user or root
credentials on the target host) and also the direct impact on the network and host such as,
to shut down a service caused by buffer overflow.



2.5 Formal representation of the model

The information model presented so far covers the description of a (static) configuration of
an ICT network and its vulnerabilities. In the formal model such a configuration describing
the state of the ICT network is represented by APA state components.

Definition 1. An Asynchronous Product Automaton (APA) consists of

– a family of state sets (Zs)s∈S,
– a family of elementary automata (Φe, ∆e)e∈E and
– a neighbourhood relation N : E → P(S)
– an initial state q0

S and E are index sets with the names of state components and of elementary automata
and P(S) is the power set of S.

For each elementary automaton (Φe, ∆e) with Alphabet Φe, its state transition relation
is ∆e ⊆ ��s∈N(e)(Zs) × Φe × ��s∈N(e)(Zs). For each element of Φe the state transition
relation ∆e defines state transitions that change only the state components in N(e). An
APA’s (global) states are elements of ��s∈S(Zs). To avoid pathological cases it is generally
assumed that S =

⋃
e∈E(N(e)) and N(e) 6= ∅ for all e ∈ E. Each APA has one initial state

q0 = (q0s)s∈S ∈ ��s∈S(Zs). In total, an APA A is defined by

A = ((Zs)s∈S, (Φe, ∆e)e∈E, N, q0)

Finite state model of the scenario. The components of the model described previ-
ously are now specified for the proposed analysis method using the APA state compo-
nents S = { A known exploits state, A plvl state, affects state, configuration state, host service state,

host vulnerability state, host vulnerable user state, . . . }.
The initial state is composed of q0A known exploits state, q0A plvl state, . . . , where

q0A known exploits state contains the exploits known by the attacker,q0A plvl state contains a
sequence of pairs of host and access privileges of the attacker on that host (e.g. (attacker,root),
(db server,none), . . . ),q0affects state contains a sequence of pairs of vulnerability and affected
product (e.g. (CAN 2002 0649,SQL Server 2000), (CAN 2002 1262,vulnerable IE), . . . ),
q0configuration state contains a sequence of pairs of a host and a sequence of installed
products (e.g. (db server,W2000 Server.SQL Server 2000), . . . ),q0host service state contains a se-
quence of pairs of host and associated service including used port and privileges (e.g.
(db server,((ftpd,ftp port),root)), (db server, ((sql res, ms sql m port), db user)). . . . ), and,
q0host vulnerability state which is empty (the vulnerabilities are computed from affects state
and configuration state in a preprocessing transition).

To describe how actions of attacker(s) and actions of the system can change the state
of the ICT network model, specifications of APA state transitions are used. These state
transitions represent atomic exploits and optionally the actions that the system executes
itself (e.g. to implement vital services).

The set of elementary automata E = { Preprocessor gen vulnerabilities, Service answer,

A select exploit, Defence Restart sshd, A CAN 2002 1262 IE caching exploit,

A CAN 2002 0649 sql exploit, A CAN 2003 0694 sendmail exploit, . . . } represents the possible
actions. The actions starting with A . . . are the actions the attacker can perform. If multiple
attackers are modelled then A is replaced by the name of the attacker.



A state transition can occur, when all expressions are evaluable and all conditions are
satisfied. So called interpretation variables are used to differentiate the variants of execution
of the same transition. All possible variants of bindings of interpretation variables from the
state components are generated automatically. So for example for a transition modelling an
exploit, all possible combinations of bindings of source and target host are computed and
further evaluated.

Definition 2. An elementary automaton (Φe, ∆e) is activated in a state q = (qs)s∈S ∈
��s∈S(Zs) as to an interpretation i ∈ Φe, if there are (ps)s∈N(e) ∈ ��s∈N(e)(Zs) with
((qs)s∈N(e), i, (ps)s∈N(e)) ∈ ∆e. An activated elementary automaton (Φe, ∆e) can execute
a state transition and produce a successor state p = (ps)s∈S ∈ ��s∈S(Zs), if qr = pr
for r ∈ S \ N(e) and (qs)s∈N(e), i, (ps)s∈N(e) ∈ ∆e. The corresponding state transition is
(q, (e, i), p).

A state transition in the given model could for example cause a change in the state com-
ponentA plvl state from (attacker,root).(db server,none). . . into (attacker,root)(db server,root). . . .

Attacker behaviour. Attacker capabilities are modelled by the atomic exploits and by
the strategy to select and apply them.

A state transition modelling an exploit is constructed from, (1) a predicate that states
that the attacker knows this exploit, (2) an expression to select source and target hosts for
the exploit, (3) a predicate that states that the target host is vulnerable by this exploit,
(4) an expression for the impact of the execution of this exploit on the attacker and on the
target host as for example the shut down of services. Optional add-ons are, an assignment
of cost benefit ratings to this exploit and intrusion detection checks.

Several different attackers can easily be included because an attacker is modelled as a
role not a single instance and the tool can automatically generate multiple instances from
one role definition.

Modelling of Denial of Service (DoS) attacks aiming to block resources or communication
channels either directly or by side effects require a much more detailed model of the resources
involved. This could be accomplished using the presented framework but is out of scope of
this paper.

Some experiments have been made to generate a set of known exploits for the attacker(s)
from a given algorithm. If for example it is assumed that the attacker knows 3 different
exploits, then all combinations of 3 exploits from the set of all specified exploits have
to be computed and further analysed. Another example for an attacker strategy is, that
the attacker uses only exploits for vulnerabilities with a severity above a given threshold.
This is based on the assumption, that the vulnerability severity reflects the probability of
exploitation of a vulnerability.

Composition of a model and computation of an attack graph. The SH verification
tool [4] is used to analyse this model. It manages the components of the model, allows to
select alternative parts of the specification and automatically “glues” together the selected
components to generate a combined model of ICT network specification, vulnerability and
exploit specification, network security policy and attacker specification. After an initial
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Fig. 4. Computation of the attack graph

configuration is selected, the attack graph (reachability graph) is automatically computed
by the SH verification tool (see Fig. 4). Formally, the attack graph is the reachability graph
of the corresponding APA model.

Definition 3. The behaviour of an APA is represented by all possible coherent sequences of
state transitions starting with initial state q0. The sequence (q0, (e1, i1), q1) (q1, (e2, i2), q2)
(q2, (e3, i3), q3) . . . (qn−1, (en, in), qn) with ik ∈ Φek represents one possible sequence of ac-
tions of an APA. qn is called the goal of this action sequence.

State transitions (p, (e, i), q) may be interpreted as labelled edges of a directed graph
whose nodes are the states of an APA: (p, (e, i), q) is the edge leading from p to q and
labelled by (e, i). The subgraph reachable from the node q0 is called the reachability graph
of an APA.

Let Q denote the set of all states q ∈ ��s∈S(Zs) that are reachable from the initial state
q0 and let Ψ denote the set of all state transitions with the first component in Q.

The set L ⊂ Ψ∗ of all action sequences with initial state q0 including the empty sequence
ǫ denotes the action language of the corresponding APA. The action language is prefix
closed. By definition q0 is the goal of ǫ.

Attack graph of the example scenario. The computed attack graph for the simple
example scenario is shown in Fig. 5. This graph was computed under the assumption that
the attacker knows all exploits. Even if we assume as a more realistic attacker behaviour,
namely that the attacker will only exploit vulnerabilities with a severity level above a given
minimum, then the graph is still far too big to inspect it manually. Figure 6 shows a detail
of this attack graph. Please note that for better readability the interpretations are omitted
at the edge labels. For example the edge q13 −→ q38 depicts the application of an exploit
where attacker A uses the ssh vulnerability CAN 2003 0693 and there is a second exploit
(which is stealth, that means not detectable by intrusion detection systems) with the same
state transition. The edge q38 −→ q73 depicts an action of the system to restart the ssh
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Fig. 5. Attack graph of simple example scenario

daemon and the edge q73 −→ q73 depicts an action that models the availability of a critical
service.
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A_CAN_2003_0693_ssh_exploit_stealth (3)
A_CAN_2003_0693_ssh_exploit
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A_CVE_1999_0035_ftp_exploit (3)

A_CAN_2003_0715_dcom_exploit (2)q13

q11

q38

q88

q78

q73

Fig. 6. Attack graph detail

For very large models, on the fly analysis allows to stop computation of the reachability
graph automatically when specified conditions are reached or invariants are broken.

3 Evaluation of the model

3.1 Cost benefit analysis

Cost benefit analysis can be used as a means to help to assess the likely behaviour of an
attacker. Cost ratings (from the view of an attacker) can be assigned to each exploit, for
example to denote the time it takes for the attacker to execute the exploit or the resources
needed to develop an exploit. Cost ratings can also be based on the severity ratings given



by CVSS or US-CERT (cf. Sect.2.3). If not only technical vulnerabilities are modelled but
also human weaknesses are considered, then cost could mean for example the money needed
to buy a password.

Based on these cost assignments (weights of edges), the shortest path from the root of
the attack graph to a node representing a successful attack can be computed using Dijkstra’s
well-known algorithm. This path represents the least expensive combined attack breaking
a given security goal.

A benefit for the attacker based on the negative impact he achieves can also be assigned,
for example to indicate the worth regarding relative criticality of the captured asset. Sum-
marised costs and benefits can be compared for selected paths or the whole graph and used
for example to find the node with the greatest benefit for a potential attacker. Please refer
to [5] for an example.

Other security related properties such as the probability of being detected by intrusion
detection systems can be associated with APA transitions. This information when evaluated
in the analysis of an attack graph can lead to improvements of a given configuration of a
critical information infrastructure.

3.2 Abstraction-based analysis

Abstract representations. The SH verification tool usually computes graphs of about
1 million edges in acceptable time and space. The problem now is, that it is impossible to
visualise a graph of that size. However abstract representations of an attack graph can be
computed and used to visualise and analyse compacted information focussed on interesting
aspects of the behaviour.

Behaviour abstraction of an APA can be formalised by language homomorphisms, more
precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗ on the action language.

By these homomorphisms certain transitions are ignored and others are renamed, which
may have the effect, that different transitions are identified with one another. A mapping
h : Σ∗ → Σ′∗ is called a language homomorphism if h(ǫ) = ǫ and h(yz) = h(y)h(z) for each
y, z ∈ Σ∗. It is called alphabetic, if h(Σ) ⊂ Σ′ ∪ {ǫ}.

The mappings used to compute the abstract representations of the behaviour have to
be property preserving, to assure that properties are transported as desired from a lower
to a higher level of abstraction and no critical behaviour is hidden by the mapping. Such
properties, namely simplicity, are given in [6] and a check for simplicity is implemented in
the SH verification tool [4]. The tool provides an editor to define homomorphisms on action
languages, it computes corresponding minimal automata [7] for the homomorphic images
and checks simplicity of the homomorphisms.

Example of a mapping to define an abstract representation. Figure 7 defines a
mapping of the transitions representing an exploit of a vulnerability to the respective range
and impact type assessments of the vulnerabilities as provided by NIST (cf. Sect. 2.3). Range
types of the vulnerabilities in the example scenario are remote (remotely exploitable) and
local (locally exploitable). Impact types used here are unspecific (provides unauthorised
access), user (provides user account access) and root (provides administrator access).
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Fig. 7. Definition of an abstract representation of the attack graph

This mapping denotes, that all transitions (the leaves of the tree) are to be represented
by their respective father nodes, namely system, preprocessing, unspecific, user, root
and local in the abstract representation. The nodes system and preprocessing are coloured
in grey, symbolising that they are mapped to ǫ, that means the transitions represented by
these nodes will be invisible in the abstract representation. Please ignore the notation (Pol)
at the node remote for the moment.

Figure 8 shows the result of application of the mapping in Fig. 7 to the attack graph
from Fig. 5. This computed abstract representation (a graph with only 20 states and 37
edges) gives a visualisation focussing on the transition types root, user, unspecific and
local. The simplicity of this mapping that guarantees that properties are preserved was
automatically proven by the tool.

Refined mapping. To find out which policies permit the attacks shown in Fig. 8, a
refinement of the abstraction defined in Fig. 7 is necessary. It is possible to “fine tune”
the mapping so that the interpretation variables (cf. Sect. 2.5) stay visible in the abstract
representation. In this case the binding of the interpretation variable Pol that contains the
respective policy can be visualised. This is denoted by (Pol) in the node remote in Fig. 7.
The corresponding refined abstract representation is a graph with 34 states and 121 edges
when computed on the attack graph in Fig. 5. The initial nodes and edges of this graph
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Fig. 8. Abstract view on an attack graph

are shown in Fig. 9(a). In comparison to the corresponding edges A20 −→ A19 and A20 −→

( unspecific  () )

( root  ( Pol = (any_role,dmz_host,ssh) ) ) (2)
( root  ( Pol = (any_role,dmz_host,smtp) ) )

A32

A33

A34

(a) (any role, dmz host, ssh/smtp)

( unspecific  () )

( root  ( Pol = (any_role,dmz_host,smtp) ) )

A32

A33

A34

(b) (any role, dmz host, smtp)

Fig. 9. Details in the abstract view

A18 of the graph in Fig. 8 now the details on the related policies are visible.

Adapt/optimise the system configuration. Further analysis reveals, that, if the ex-
ample policy given in Fig. 3(b) is changed to allow only smtp instead of ssh and smtp for
any role to dmz host then the analysis yields of course a smaller graph than the original
shown in Fig.5, the coarse abstract representation in Fig. 8 is the same, but the finer map-
ping with interpretation variable Pol visible results in a different representation which is
shown in Fig. 9(b).

If alternatively the policy is restricted to allow only ssh instead of ssh and smtp in the
above example, then the result is yet a different attack graph but the abstract view in Fig. 8
is still the same.

This analysis demonstrates that there may be differences in the detailed attack graphs
but no differences in the abstract representations thereof. This indicates that the different
policies are equally effective (or not) concerning the enforcement of security goals on the
abstract level, even if variations in the attack paths are covered by different policy rules.



Using predicates to define abstractions. Let us now assume that the host db server
in the scenario is the most valuable and mission critical host in the ICT network. So we
want to know if in the given scenario, (1) attacks to the db server are possible, (2) on which
vulnerabilities they are based, and, (3) what policy rules are directly involved.

The abstraction in Fig. 10(a) exemplifies how predicates can be used to define such
a mapping. In this mapping the predicate (T=db server) matches only those transitions
that model direct attacks to the target host db server. Furthermore the bindings of the
interpretation variables V ul and Pol that contain the respective vulnerability and policy
are used in the mapping. The remote transitions that don’t match that predicate are mapped
to ǫ and so are invisible.

system

preprocessing

 ~(,(T=db_server),) 

 (,(T=db_server),) 

remote  (,(T=db_server),);  (Vul,Pol)

local

scenario

(a) Abstraction used

start:

     Pol = (intern_host,any_role,net) ) )
   ( Vul = CAN_2002_0649         
(  (,(T=db_server),)   

A1

A2

(b) Resulting graph

Fig. 10. Focus on attacks to the host db server

Evaluating this abstraction on the attack graph from Fig. 5 above results in the simple
graph given in Fig. 10(b). This proves that, (1) in the current policy configuration attacks
to the db server are possible, (2) those attacks are based on exploits of the vulnerability
CAN 2002 0649, and, (3) they are utilising the policy permission (intern hosts,any role,net). So
to prevent this attack, it has to be decided, whether it is more appropriate to uninstall the
product that is hurt by this vulnerability or to restrict the internal hosts in their possible
actions by replacing the above policy with a more restrictive one.

3.3 Liveness properties

As it is well known, system properties are divided into two types: safety (what happens
is not wrong) and liveness properties (eventually something desired happens) [8]. Liveness
properties in the context of ICT infrastructure security analysis cover availability and busi-
ness continuity aspects for example with respect to denial of service attacks.

On account of liveness aspects system properties are formalised by ω-languages (sets of
infinite long words). So to investigate satisfaction of properties “infinite system behaviour”
has to be considered. This is formalised by so called Eilenberg limits of action languages
(more precisely: by Eilenberg limits of modified action languages where maximal words are
continued by an unbounded repetition of a dummy action) [9].



The usual concept of linear satisfaction of properties (each infinite run of the system
satisfies the property) is not suitable in this context because no fairness constraints are con-
sidered. We put a very abstract notion of fairness into the satisfaction relation for properties,
which considers that independent of a finitely long prefix computation of a system certain
desired events may occur eventually. To formalise such “possibility properties”, which are
of interest when considering what we call cooperating systems, the notion of approximate
satisfaction of properties is defined in [9].

Definition 4. A system approximately satisfies a property if and only if each finite be-
haviour can be continued to an infinite behaviour, which satisfies the property.

For safety properties linear satisfaction and approximate satisfaction are equivalent [9].
To deduce approximately satisfied properties of a specification from properties of its abstract
behaviour an additional property of abstractions called simplicity of homomorphisms on an
action language [10] is required. Simplicity of homomorphisms is a very technical condition
concerning the possible continuations of finite behaviours.

For regular languages simplicity is decidable. In [10] a sufficient condition based on
the strongly connected components of corresponding automata is given, which easily can be
checked. Especially: If the automaton or reachability graph is strongly connected, then each
homomorphism is simple. The following theorem [9] shows that approximate satisfaction of
properties and simplicity of homomorphisms exactly fit together for verifying cooperating
systems.

Theorem 1. Simple homomorphisms define exactly the class of such abstractions, for
which holds that each property is approximately satisfied by the abstract behaviour if and
only if the “corresponding” property is approximately satisfied by the concrete behaviour of
the system.

Formally, the “corresponding” property is expressed by the inverse image of the abstract
property with respect to the homomorphism.

When a system’s countermeasures and the behaviour of vital services the system provides
are included in the model, then availability properties such as the system’s resilience with
respect to denial of service attacks can be analysed.

The state transitions Defence restart sshd and Service answer in Fig. 6 give an ex-
ample for a modelling of system countermeasures and critical services availability. If for
example as a side effect of an ssh exploit the attacker kills the sshd then afterwards the
sshd is not active on the respective host and so some service possibly cannot answer re-
quests anymore. Now additionally a system countermeasure is considered that restarts the
sshd. No other details are added to keep the model small. A typical liveness question in this
scenario is “Will a client still get answers from a server when the network is attacked ?”.
Using the appropriate type of model checking, approximate satisfaction of temporal logic
formulae can be checked by the SH verification tool [11], [4]. In terms of temporal logic
the property in question above can be written as G F Service answer (always eventually
Service answer) which is found to be true by the tool.



4 Resilience against exploits of unknown vulnerabilities

One way to consider resilience of an information infrastructure against attacks to unknown
vulnerabilities is, to define a new vulnerability for each installed product. For the model of
the scenario used in this paper this has been done by definition of a new vulnerability called
CAN generic with a variable part for the affected service. In the same way a generic exploit
based on this vulnerability is defined. Now in the preprocessing phase a state transition
selects an arbitrary product and inserts a generic vulnerability CAN generic for that product
and the related service. Because the reachability analysis considers every possible choice of
product, all alternatives are evaluated in the attack graph.

When analysing the (now much larger) attack graph, the mapping in Fig. 11 exemplarily
shows a possible use of resilience analysis. The state transition modelling an exploit of an
unknown generic vulnerability uses the additional interpretation variables RS and RT ,
where RS denotes the role of the source host and RT the role of the target host. So the
given predicate (RS = RT ) matches only those transitions that model attacks of hosts in the
same role (within the same zone). Now the attacks that fulfil this predicate are mapped to ǫ
(coloured in grey in the mapping) and so are invisible, whereas the attacks with RS 6= RT
(across roles/zones) are visible. Furthermore the bindings of the interpretation variables
V ulServ and Pol that contain the respective vulnerable service and policy are used in the
mapping. All other transitions are mapped to ǫ.

 ~(,(RS=RT),) 

 (,(RS=RT),) 

unknown  (,(RS=RT),);  (VulServ,Pol)

preprocessing_system_local_remote

scenario

Fig. 11. Mapping for attacks against unknown vulnerabilities that cross zones

The abstract representation computed from that mapping is shown in Fig. 12. It gives
a clear overview about what kind of zone crossing attacks would be possible in case that
new unknown vulnerabilities were exploited. For each assumed vulnerable service it shows
the policies that would allow the attack.

Using a modified definition of the mapping in Fig. 11 allows to look into more detail
for example behind the edge (V ulServ = sendmaild Pol = (intern host, any role, net))
shown in bold font in Fig. 12. A refined mapping with predicate (RS 6= RT ∧ V ulServ =
sendmaild) and visible interpretation variables RS and RT results in an abstract repre-
sentation with 4 parallel edges labelled (RS = developer host RT = dmz host), (RS =
db host RT = dmz host), (RS = intern host RT = dmz host) and (RS = management -
host RT = dmz host) respectively. This shows that if an attacker knows a new exploit for
an unknown vulnerability of the product providing the sendmaild, then the current policy
rule (intern host, any role, net) would allow to use the exploit to cross the 4 given zones.

Now if the policies are quite restrictive and no new cross role/zone attacks are found by
the reachability analysis, then it can be concluded that the network configuration is resilient



start:

( VulServ = sshd  Pol = (dmz_host,intern_host,ssh) )
( VulServ = sshd  Pol = (intern_host,any_role,net) )

( VulServ = sshd  Pol = (dmz_host,intern_host,ssh) )
( VulServ = sshd  Pol = (any_role,dmz_host,ssh) )
( VulServ = sshd  Pol = (intern_host,dmz_host,ssh) )
( VulServ = sshd  Pol = (intern_host,any_role,net) )

( VulServ = sshd  Pol = (dmz_host,intern_host,ssh) )  
( VulServ = sendmaild  Pol = (intern_host,any_role,net) )
( VulServ = sql_res  Pol = (intern_host,any_role,net) )
( VulServ = ftpd  Pol = (intern_host,any_role,net) )

( VulServ = sshd  Pol = (any_role,dmz_host,ssh) )  
( VulServ = sshd  Pol = (intern_host,dmz_host,ssh) ) 

( VulServ = sshd  Pol = (intern_host,any_role,net) )

A1

A2A3

A4

Fig. 12. Abstract representation of attacks against unknown vulnerabilities

with respect to attacks against one unknown vulnerability. In the same way resiliency with
respect to two or more unknown vulnerabilities can be analysed. Please note that in many
cases this will not be possible because of state space explosion problems but computation of
a section of the attack graph by giving a limitation on the number of edges to be computed
is possible and should help to find problems and to successively restrict the configuration
to an acceptable risk level.

5 Related work

This paper is based on the work presented in [12]. The network vulnerability modelling
part of the framework presented here is adopted from the approach introduced in [5] and is
similar in design to an approach by Phillips and Swiler in [13] and [14]. Related work of Jha,
Sheyner, Wing et al. used attack graphs that are computed and analysed based on model
checking in [15] and [16]. Ammann et al. presented an approach in [17] that is focussed on
reduction of complexity of the analysis problem by explicit assumptions of monotonicity.

To seamlessly integrate the methods and tool presented here into a network vulnerability
analysis framework, a tool-assisted transformation of up-to-date ICT system configuration
and vulnerability databases into a formal specification of the model is required. This should
preferably be based on automatically updated information of network scanners because
administration databases are typically out-of-date. Recent work by Noel, Jajodia et al.
in [18] and [19] already covers this aspect and also describes attack graph visualisation
techniques.

The work of Kotenko and Stepashkin in [20] is focussed on security metrics computations
and adaptive cooperative defence mechanisms [21].

To model the ICT network, the vulnerabilities and the intrusion detection systems, a
data model loosely resembling the formally defined M2D2 information model [1] is used.
Appropriate parts of this model are adopted and supplemented by concepts needed for



description of exploits, attacker knowledge and strategy and information for cost benefit
analysis. A formal approach to use an Organisation-Based Access Control (Or-BAC) model
to specify network security policies was presented in [2]. This approach is adopted here to
model the network security policies in the attack graph analysis framework.

The modelling framework is based on Asynchronous Product Automata (APA), a flexible
operational specification concept for cooperating systems [11]. The applied analysis method
is implemented in the SH verification tool [4] that has been adapted and extended to support
the presented attack graph evaluation methods.

Major focus of the combined modelling framework presented in this paper, is the inte-
gration of formal network vulnerability modelling on the one hand and network security
policy modelling on the other hand. This aims to help adaptation of a network security pol-
icy to a given and possibly changing vulnerability setting. Recent methods for analysis of
attack graphs are extended to support analysis of abstract representations of these graphs.

Extensions to the APA-based model checking techniques are needed to be able to verify
entire families of systems, independent of the exact number of replicated components. Such
an approach to abstraction-based analysis of parameterised policy controlled systems is
presented in [22].

6 Further research objectives

The work presented in this paper brings together, (1) attack graph computation technology,
(2) state-of-the-art policy modelling, and, (3) formal methods for analysis and computation
of abstract representations of the system behaviour. The aim is, to guide a systematic
evaluation and assist the persons in charge with optimising adaptation of the network
security policy to an ever-changing vulnerability setting and so to improve the configuration
of the information infrastructure.

(Security) metrics in abstract representations. A summarisation of severity ratings
for single security vulnerabilities as provided by CVSS or US-CERT (cf. Sect. 2.3) based on
attack graphs has been addressed in recent work of Kotenko and Stepashkin [20]. Interesting
questions in such an approach are, which attacker strategy or bundle of strategies to apply
and how to “condense” the information in the graph into a comprehensive measure of the
security of an ICT network.

In an abstraction-based approach a method to assign measures to the nodes or edges in
the abstract representations is needed. One idea is to look at the origin nodes (nodes in the
attack graph) of an abstract node and then for example compute the minimum value of some
measure from the set of origin nodes. If for example a shortest path analysis (cf. Sect.3.1)
was computed on the attack graph, then each node of the attack graph is associated with
a value for the shortest (least expensive) path to that node. If now the semantics of these
values allows a comparison, then a function such as the minimum measure from the set of
origin nodes can be associated with each node in the abstract representation. If the cost
ratings of the transitions in the attack graph are based on severity ratings from CVSS or
US-CERT (cf. Sect.2.3) then the function for the transformation of the values in the origin
nodes to the abstract representation can be used for a metric of security of the critical
information under the abstract view defined by the mapping. Consideration of resilience



against exploits of unknown vulnerabilities (cf. Sect. 4) could also contribute to such a
measure.

Threat response mechanisms. An even more advanced objective is, to extend this
framework to support policy-based, automated threat response that makes use of alert infor-
mation. Such a self-adaptive response mechanism could substantially improve the resilience
of policy controlled ICT systems against network attacks. A framework for simulation of
adaptive cooperative defense against internet attacks has been presented by Kotenko and
Ulanov in [21]. Analysis of distributed coordinated attacks and the controlling mechanisms
such as botnets using the abstraction-based approach presented in this paper would com-
plement their approach.
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deploy a network security policy. In: Second Workshop on Formal Aspects in Security and
Trust (FAST). (2004)

3. Schiffmann, M.: A Complete Guide to the Common Vulnerability Scoring System (CVSS)
(2005) http://www.first.org/cvss/cvss-guide.html.
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6. Ochsenschläger, P., Repp, J., Rieke, R.: Verification of Cooperating Systems – An Approach
Based on Formal Languages. In: Proc. 13th International FLorida Artificial Intelligence Re-
search Society Conference (FLAIRS-2000), Orlando, FL, USA, AAAI Press (2000) 346–350

7. Eilenberg, S.: Automata, Languages and Machines. Volume A. Academic Press, New York
(1974)

8. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4) (1985)
181–185
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11. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool Abstraction-
Based Verification of Co-operating Systems. Formal Aspects of Computing, The International
Journal of Formal Method 11 (1999) 1–24

12. Rieke, R.: Modelling and Analysing Network Security Policies in a Given Vulnerability Setting.
In: Critical Information Infrastructures Security, First International Workshop, CRITIS 2006,
Samos Island, Greece. Volume 4347 of LNCS., Springer (2006) 67–78 c© Springer.

13. Phillips, C.A., Swiler, L.P.: A graph-based system for network-vulnerability analysis. In:
NSPW ’98, Proceedings of the 1998 Workshop on New Security Paradigms, September 22-25,
1998, Charlottsville, VA, USA, ACM Press (1998) 71–79

14. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation tool. In:
DARPA Information Survivability Conference and Exposition (DISCEX II’01) Volume 2,June
12 - 14, 2001, Anaheim, California, IEEE Computer Society (2001) 1307–1321

15. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: 15th IEEE
Computer Security Foundations Workshop (CSFW-15 2002), 24-26 June 2002, Cape Breton,
Nova Scotia, Canada, IEEE Computer Society (2002) 49–63

16. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and
analysis of attack graphs. In: 2002 IEEE Symposium on Security and Privacy, May 12-15,
2002, Berkeley, California, USA, IEEE Comp. Soc. Press (2002) 273–284

17. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analysis.
In: Proceedings of the 9th ACM conference on Computer and communications security, ACM
Press New York, NY, USA (2002) 217–224

18. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical aggrega-
tion. In: VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on Visualization and
data mining for computer security, New York, NY, USA, ACM Press (2004) 109–118

19. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple Coordinated Views for Network Attack
Graphs. In: IEEEWorkshop on Visualization for Computer Security (VizSec’05), Los Alamitos,
CA, USA, IEEE Computer Society (2005)

20. Kotenko, I., Stepashkin, M.: Analyzing Network Security using Malefactor Action Graphs.
International Journal of Computer Science and Network Security 6 (2006)

21. Kotenko, I., Ulanov, A.: Multi-agent Framework for Simulation of Adaptive Cooperative De-
fense against Internet Attacks. In: In Proceedings of International Workshop on Autonomous
Intelligent Systems: Agents and Data Mining (AIS-ADM-07). Lecture Notes in Artificial In-
telligence, Vol.4476. (2007)
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