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Abstract—The connection of automotive systems with other
systems such as road-side units, other vehicles, and various
servers in the Internet opens up new ways for attackers to
remotely access safety relevant subsystems within connected
cars. The security of connected cars and the whole vehicular
ecosystem is thus of utmost importance for consumer trust and
acceptance of this emerging technology. This paper describes an
approach for on-board detection of unanticipated sequences of
events in order to identify suspicious activities. The results show
that this approach is fast enough for in-vehicle application at
runtime. Several behavior models and synchronization strategies
are analyzed in order to narrow down suspicious sequences of
events to be sent in a privacy respecting way to a global security
operations center for further in-depth analysis.
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I. INTRODUCTION

Connected cars, road-side units, and external services estab-
lish a new ecosystem with important advantages - such as sit-
uational awareness - that enable vehicles to act autonomously
and intelligently. However, when formerly closed automotive
systems now evolve into open systems, then external security
threats indirectly impact the safety mechanisms that probably
have been developed with a closed-world assumption for the
vehicle in mind [1]. Security problems in modern cars have
been revealed in [2] and, most recently, in [3], where it has
been shown that a large number of modern vehicles could be
attacked by remotely injecting messages to in-vehicle networks
such as the Controller Area Network (CAN) bus. Safety
critical Electronic Control Units (ECUs) that are connected
to this bus finally influence physical actions such as steering
and braking. It is thus very important to improve security of in-
vehicle networks and, as long as there are no effective means
to prevent specific attacks, there should be methods in place
to automatically detect them and warn the driver [4].

The aim of this work is, to complement specification-
based on-board attack detection [5] by measures to detect
unanticipated sequences of events in order to identify subtle
signs of suspicious activities that could indicate new unknown
attacks. In our approach, we assume that in the future there
will be a multi-level hierarchy of systems for detection and
prevention of malicious activities in place. In the vehicle,
signature-based measures to detect and combat known attacks

will act autonomously within the on-board network. However,
the detection of new unknown attacks in general requires
(a) more resources than available in one vehicle and (b) more
knowledge than available locally. As a consequence, we expect
that - in addition to the local detectors - there will be advanced
back-end systems that will collect information from fleets of
vehicles and analyze these based on the global view, such as
the cloud-assisted defense framework described in [6]. This
centralized analysis will allow for generation of new signatures
that in turn will be deployed to the in-vehicle detectors. This
paper contributes to such an approach by providing means for
local in-vehicle processing of event streams in order to identify
anomalous behavior. The normal behavior will be filtered out
and only the unanticipated behavior will be sent to the global
operations center for further analysis. It is important to note
that for privacy reasons only data strictly needed for security
guarantee must be send to remote analysis, while unnecessary
details must be deleted or made anonymous [7]. Our goal is
to identify a very small partition (< 1%) of unanticipated
behavior based on models of normal behavior generated in
a clean environment.

The main contributions of this work are (a) the design
and implementation of a model-based method to compare the
measured behavior of a vehicle with the expected behavior,
(b) the experimental determination of model complexity that
is necessary to find security anomalies and fast enough in
practice, and (c) the analysis of the effects of several possible
strategies to re-synchronize the model with the event stream
when events don’t fit to the expected behavior.

This article is structured as follows: Section II discusses
related work, while Section III introduces the application
scenario and the preparation of test data. Section IV describes
the discovery of behavior models and their processing during
runtime. Section V presents the results of various experimental
setups, and Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

For Intrusion Detection System (IDS) in automotive con-
text, several publications propose anomaly detection based on
clearly defined and specified normal on-board system behav-
ior [8] and suggest specification-based attack detection [5],
assuming that a representation of the normal behavior of
communication and ECUs can be derived from the system
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policy and the expected usage of a component, which is
then compared to the observed behavior. In [9] a set of in-
vehicle detection sensors is described from an abstract point
of view. Details on implementation and verification are not
given in the above publications. On the commercial side,
Towersec provides a product called ECUSHIELD [10] that
runs on a CAN bus accessible ECU, telematics controller
or infotainment unit, and continuously monitors the events
in order to identify new threats. According to [11], Argus
also provides an IDS that identifies attacks in the in-vehicle
network and blocks them in real time. To the best knowledge
of the authors of this paper, details about the approaches used
in the Towersec and Argus products are not publicly available.

In general, IDS [12] systems usually do not have knowledge
of the vehicle applications, thus lacking the connection be-
tween the reported security problems and the affected critical
behavior. IDS systems can be based on several different
technologies, such as Complex Event Processing (CEP) [13],
[14] or Deep Learning (DL) [15], [16]. For example, in [17]
an IDS applying DL is described. However, the system is only
verified on synthetic data. Such systems often deliver a very
low false positive rate, but they usually identify outliers based
on inspection of single events. Thus, they might miss attacks
based on valid events sent in the wrong context. Predictive
security analysis for event-driven processes has been intro-
duced in [18], [19], [20]. Here, we use a similar approach
but a different realization adapted for the requirements of the
automotive domain. We combined Process Mining (PM) [21],
[22] with CEP technologies in order to allow for analysis of
anomalous behavior within on-board systems in connected cars
that is characterized by anomalies in sequences of events and
not detectable in single events on a CAN bus of a modern
vehicle.

III. APPLICATION SCENARIO AND REQUIREMENTS

Today’s upper-class cars contain more than 70 ECUs. These
are connected in different bus systems which are intercon-
nected via a central gateway and have different tasks. The
central gateway is also connected to an On-Board Diagnose
(OBD) port. This port is used by repair shops to find problems
and to perform exhaust measurements.

To detect attacks inside an automotive network we con-
nected a CAN bus adapter to the OBD port of a Renault
Zoe (2016) and stored every transmitted message. Every CAN
message is stored with a time stamp in seconds, the bus the
message came from, the message ID that indicates the purpose
of the message, a indicator Rx or Tx for Receive exchange
or Transmission exchange, the length of the message and
the payload. This recording procedure was done twice. Once
during a drive for about 10 minutes in an urban environment
and once in a standing car with ignition turned on.

To simulate an attacker, we synthesized known attacks
from [23] and introduced messages with wrong steering an-
gles, brake positions and speed information and injected these
into the message stream on the bus. Attacks like these lead
to physical impacts and may harm peoples lives. Table I

TABLE I: Excerpt from extracted CAN bus trace

time proc ECU Rx/Tx len payload
. . . . . . . . . . . . . . . . . .

264.452194 2 32C Rx 2 3E 80
264.452353 1 1F6 Rx 8 DE 20 08 2F 00 FF FF FF
264.452599 1 1F8 Rx 8 4F 04 80 1F FE 00 02 0D
264.452841 1 432 Rx 8 50 00 02 0B AC 80 00 58
264.453075 1 130 Rx 8 00 E8 6F FE 62 AB DC C1
264.453792 1 212 Rx 6 FE 1D C0 6C FF FF
264.455620 1 C6 Rx 8 93 67 7F FF 80 08 B6 49
264.457624 1 17A Rx 8 FF FF FF AA 00 F0 31 A3
264.457784 1 439 Rx 3 3E 80 F0
264.458022 1 C6 Tx 8 6C E3 7F FF 80 08 82 28
264.458030 1 17E Rx 8 FF FF FF 00 FF 40 00 FF
264.458254 1 186 Rx 7 19 50 32 03 20 00 20
264.458762 1 12E Rx 8 C9 80 00 7F E0 FF FF 00

. . . . . . . . . . . . . . . . . .

shows an extract of the recorded messages (marked by Rx)
and a synthesized attack (marked by Tx). In a similar way,
attacks like the one described in [9], namely, a sequence of
events which is shifting the vehicle speed from a very low
value (e.g. 20 km/h) to a very high value (e.g. 200 km/h)
and backward without expected intermediate values, could be
synthesized and injected. Never the less the attack sends only
valid messages to the bus stream. The messages can be the
equivalent of an emergency brake or a fast acceleration.

IV. IMPLEMENTATION OF ANOMALY DETECTION SYSTEM

The detection process of anomalous behavior is basically
divided into two stages. In the first stage, denoted as discovery,
a model representing the normal behavior of the car is derived.
In the second stage, denoted as conformance checking, the
model is utilized to determine deviation from the model, i.e.,
anomalies. The basis of the normal behavior model are traces
recorded from the CAN bus of the car. Because we assume that
the behavior of the car does not change often, the discovery
stage is an offline operation. As representation model we
chose Petri nets, which were mentioned first in [24] and are
very common in process mining ([22], [25]). We utilize the
Alpha algorithm [26] to derive a Petri net from a given trace,
presented in Algorithm 1. For our implementation we used the
open source libraries available at [27].

Algorithm 1: Petri net construction with [27]
Input : String inFile
Output: Pair<Petri net,Marking>

XLog l;
XEventClassifier c;
AlphaMinerParameters p;
XAttributeMap m ← new XAttributeMapImpl();
l ← CreateXLogFromCSV.readInputFromCSV(inFile,
attributeMap);

c ← new XEventAttributeClassifier(”ZoeEventClassifier”,
”MessageID”); p ← new
AlphaMinerParameters(AlphaVersion.CLASSIC);

return AlphaClassicMinerImpl.run(null, log, classifier,
parameter);



The anomaly detection is implemented in our CEP mid-
dleware framework [28]. In this framework, several Event
Processing Agents (EPAs) are connected to an Event Pro-
cessing Network (EPN). We implemented a specialized Petri
net EPA (PEPA) which maintains the current state of a Petri
net representing the behavior model. This PEPA consumes
events from the trace as input and outputs only those events
that are classified as anomalies. As the discovery stage is an
offline operation, the PEPA is initialized with the Petri net
representing the model.

Algorithm 2 describes the anomaly detection routine of a
PEPA. An incoming event is classified as conform with the
behavior, iff there is a valid transition from an active place of
the Petri net. Otherwise, the event is classified as anomaly. The
PEPA checks the routine in Algorithm 2 for each incoming
event and outputs only those events which are classified as
anomaly, i.e., do not match the expected behavior.

Algorithm 2: Processing of an event
Input : Petri net p, XEvent e
Output: False in case of an anomaly, true otherwise

Transition t ←− null;
String id ←− e.getAttributes().get(”id ”).toString();
foreach Transition tmp in p.getTransitions() do

if tmp.getLabel() = id then
t ← tmp;
break;

end
end
if t = NULL then

return false ; // No transition at all
end
try

Marking o ← new Marking();
o.addAll((semantic.getCurrentState());
PetrinetExecutionInformation result ←
(PetrinetExecutionInformation)
semantic.executeExecutableTransition(t);

marking ← result.getTokensProduced();
return true;

catch IllegalArgumentException
return false ; // No active transition

end

We differentiate two different types of anomalous events,
unknown and unanticipated events. While the former type of
event has never occurred before, the latter only does not fit
in the current context of the behavior model. In case of an
unanticipated event, we implemented three different strategies
to calibrate the Petri net for further processing: (a) simply
ignores the unanticipated event and remains the current state
of the Petri net; (b) resets the Petri net to its initial state;
(c) creates a copy of the PEPA and applies (a) and (b) in
parallel.

V. ANALYSIS OF THE EFFECTIVENESS OF THE APPROACH

As a basis for the experiments reported in this section, we
used a logfile containing 1.014.070 events that was recorded
while driving the car (cf. Sect. III). The logfile covers 537
seconds of realtime traffic on the CAN bus, and thus, the
average event rate is 1.888 events/second. From this fact it
follows that the processing of the events needs to be faster
than this rate because otherwise it would be necessary to drop
events. The majority of the measurements in this section have
been produced on a personal computer with Intel Core i5 CPU
and 8GB memory. Whenever computations have been run on
another machine, the times have been adjusted according to
the speed difference. We plan to make this logfile publicly
available, in order to enable reproduction of the results and
comparison with other approaches in the field.

A. Construction of the behavior model

The first task was the construction of a suitable behavior
model. The aim was the experimental determination of model
complexity that is sufficiently complete to identify behavior
anomalies and small enough to allow realtime processing in
practice (at the speed of the CAN bus). For our experiments
we used the Alpha algorithm to compute several models based
on different excerpts of the available logfile (see Table II). A
stream of events characterizes one specific execution trace of
the observed automotive system. In order to avoid state space
explosion problems, it is important to define a mapping of the
runtime events to the abstract actions considered by the model
discovery algorithm. The coarsest abstraction that still contains
all security relevant information should be used [19], [20]. For
the following experiments, we projected each CAN message
to its message ID that indicates the purpose of the message.
It is important to note that this mapping has to be optimized
with respect to specific attacks. For example, when attacks are
characterized by wrong steering angles or sudden changes in
speed, then these parameters need to be part of the model and
thus should be included in the event mapping. The number
of events taken into account varied between 500 and 4.000.
Larger models would slow down the realtime processing below
the limit of 1.888 events/second.

From Table II it can be concluded that the time needed to
compute such a model is growing faster than linear from 94
events/second in M1000, 68 events/second in M2000” and 53
events/second in M4000 to only 2,4 events/second in M4000’.
An aside: We found that the Alpha algorithm is very slow
when the number of events exceeds 14.000. Fortunately, the
time to compute such a model is not so critical because we
assume that the behavior of a car will not change very often
(basically in case of software updates). Therefore, we assume
that the model can be computed offline.

B. Event stream processing

The next interesting question was to analyze execution times
of behavior checking when comparing the expected behavior
given by the model with the measured behavior given by an
event stream. At runtime the event stream has to be mapped



TABLE II: Construction time and size of models

Petri net model discovery
Model Start Events Time Tran. Places Edges

M500 0 500 1.176 83 112 455

M1000 200.000 1.000 10.611 97 232 1.423
M1000’ 490.000 1.000 1.717 95 170 879
M1000” 700.000 1.000 2.647 95 170 849

M2000 200.000 2.000 11.333 104 317 2.056
M2000’ 490.000 2.000 3.233 102 271 1.337
M2000” 700.000 2.000 29.213 101 313 1.819

M3000 200.000 3.000 65.473 104 566 4.603
M3000’ 490.000 3.000 235.250 104 623 4.899

M4000 200.000 4.000 75.018 105 537 3.816
M4000’ 490.000 4.000 1.671.779 105 900 7.994

Model is the identifier used for further reference; Start denotes the position in the logfile
where the first event for the model is taken; Events denotes the number of consecutive
events used for the model discovery; Time is the maximum time in milliseconds for the
generation of the model, where the maximum is taken based on two runs with very small
deviations; Trans., Places, Edges denote the number of transitions, places and edges of
the generated Petri net.

to an abstract stream by the same projection used in the model
discovery phase. In order to improve performance, this filtering
and aggregation step could be implemented by specialized pre-
processing components [29], [20]. The experiments revealed
that out of the three implemented strategies to calibrate the
Petri net, strategy (b) did not detect anomalies successfully in
the given event streams, and for strategy (c) the throughput
was very slow except for the smallest M500 model. This is
because each fork had to compute the followup states in the
Petri nets independently. In the following, we therefore report
only the results of strategy (a).

Fig. 1: Throughput when unanticipated events are ignored

As shown in Fig. 1, the throughput is dependent on the
complexity of the model as well as on the anomaly man-
agement strategy. However, for the complex models M3000,
M3000’ and M4000 analyzed here, the throughput is above
2.650 events/second and even for the most complex model
M4000’ the throughput is slightly above 2.000 events/second.

This means that the data which are generated by the given
car at a rate of 1.888 events/second could be processed in
real time. We also checked the maximum storage used when
processing the different models and found that the allocated
storage never exceeded 800 MB. Thus, this resource is not a
problem for the processing of the given event streams.

Summarizing these experiments, we conclude that our pro-
posed approach and implementation are able to execute the
behavior check at execution time fast enough with the given
computing platform. We have also done the same experiments
with models computed by the Alpha+ algorithm [26] but we
did not find significant differences.

C. Model quality

For the experimental determination of model complexity
that is most suitable to find security anomalies, the first goal
is to reduce the number of unknown events that are not in
the model because they didn’t appear in the part of the logfile
that was used to generate the Petri net. Column Unknown
in Table III shows the results for the different models that
we used. We conclude that for our setup the models M4000
and M4000’ which have been generated on the basis of 4.000
events from different ranges within the logfile provide the best
coverage although there are still 280 events that appear in the
test data consisting of 1.000.000 events recorded while driving
the car but not in the models.

In order to identify normal behavior based on the Petri
net models, we had to decide what to do when an event
is identified that does not fit to the expected behavior. As
stated above, in strategy (a) we ignored these unanticipated
events that means we didn’t change the state of the model and
proceeded with checking the next event. Table III shows the
results computed for the different models.

TABLE III: Anomaly rate for strategy Ignore
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Model Unknown Unanticipated Ignored (sum)

M500 96.938 5.210 102.148 (10,21%)
M1000 3.102 9.066 12.168 (1,22%)
M1000’ 4.158 880 5.038 (0,50%)
M1000” 4.170 645 4.815 (0,48%)
M2000 457 9.045 9.502 (0,95%)
M2000’ 809 490 1.299 (0,13%)
M2000” 985 1.130 2.115 (0,21%)
M3000 457 8.844 9.301 (0,93%)
M3000’ 457 451 908 (0,09%)
M4000 280 8.623 8.903 (0,89%)
M4000’ 280 455 735 (0,07%)

The results of the experiments with this synchronization
strategy demonstrate that our approach delivers very low
anomaly rates when the model is carefully adjusted. It is an
important result that the identification of the parts of the log
that contain a good coverage of the system behavior is essential
for the quality of the model, e.g. the model M1000” with only
849 edges is of better quality than the much more complex
model M4000 with 3.816 edges.



VI. CONCLUSION AND FUTURE WORK

The aim of this paper was to provide an approach and an
implementation for in-vehicle processing of event streams in
order to identify anomalous behavior with respect to sequences
of events and not only single events. The normal behavior
should be filtered out thus leaving only a small percentage of
abnormal behavior that might be caused by malicious agents
and might lead to safety critical actions in the actuators of
the car. Thus, these unanticipated events need to be further
processed for further security analysis, either by other in-
vehicle components, such as those proposed in [9], or by a
global operations center.

In order to satisfy this objective, this work contributes
the design and implementation of a model-based method to
compare the measured behavior of a vehicle with the expected
behavior. The experiments have shown that the proposed
approach is appropriate to compute the models we considered
and to execute the behavior check on the given computing
platform fast enough to follow the event stream at execution
time without the need to drop events. Our overall goal has been
to identify a very high partition of normal behavior based on
models generated in a clean environment. We have shown that
the anomaly rate for strategy Ignore has been below 1% for
models with sufficient coverage and 0.07% for the best model.

Future work on model discovery should provide algorithms
that adapt the model during execution time on-the-fly when-
ever false positives are found. Future work on the improvement
of the detection of attacks needs to explore an analysis of the
payload of the CAN bus events because some attacks can only
be detected when payload is taken into account in the model.
Future work on performance issues should aim to transfer the
software to an embedded platform that is likely to be used in
modern cars. Finally, there are many interesting issues when
designing a global system that gets event streams from many
cars and that identifies attacks which are only detectable with
a global view.
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