
Development of formal models for secure e-services

Roland Rieke

SIT – Fraunhofer - Institute for Secure Telecooperation,

Rheinstr. 75, D-64295 Darmstadt, Germany

E-Mail: rieke@sit.fraunhofer.de

January 10, 2003

Abstract

A methodology for the development of formal models for e-services is
presented. Verification of the correct behaviour when given expected in-
put and check for security properties by adding selected attack patterns is
shown. An example scenario of a typical e-service configuration is given
and the dynamic behaviour of different variants is analysed. To improve
security of a system providing a collection of e-services it is essential to
make each e-service secure using a design and verification method based
on formal methods and tools 1.

1 Introduction

The goal of the development of formal models of e-services is to achieve a
systematic and verifiable improvement of security of the system providing the
services.

Reliable security primitives already exist, but the security of complex appli-
cations essentially depends on the correct and consistent interplay of security

1This work was funded by the “Bundesministerium für Bildung und Forschung” in the
context of the SKe project (http://www.ske-projekt.de/).



primitives and resource management.

To verify the correctness of a given e-service a formal model of its components
and their interplay is usually analysed by computing its dynamic behaviour
and automatically inspecting the generated state space for postulated safety
and liveness properties.

To additionally prove some selected security properties one can add the formal
specification of a potential attacker to the given model and check if the security
properties hold.

In section 2 the used methods and tool are presented. The methodology for
development and evaluation of formal security models for e-services is described.

In section 3 the selected portal scenario and analysed security properties are
informally described and formally specified using the presented method and
tool. After finding a violation of a security property an extended version of the
portal scenario using an additional cryptographic protocol is analysed.

In section 4 some implemented features to support attack simulations on formal
models are described.

Finally the results of this study are summarised and some perspectives for
further development are presented.

2 Outline of methodology for the development of
formal models for e-services

2.1 Methods and tool used

Modelling is based on asynchronous product automata (APA), a flexible oper-
ational specification concept for cooperating systems [10]. APA are supported
by the SH verification tool developed at Fraunhofer SIT [9, 11]. The tool pro-
vides components for the complete cycle from formal specification to exhaustive
validation.

An APA can be seen as a family of elementary automata. The set of all possible
states of the whole APA is structured as a product set; each state is divided
into state components. In the following the set of all possible states is called
state set. The state sets of elementary automata consist of components of the
state set of the APA. Different elementary automata are “glued” by shared
components of their state sets. Elementary automata can “communicate” by
changing shared state components [6].

A small example to illustrate how APA can be used to specify a system and
how to explore the computed reachability graph with the SH verification tool
is presented in the appendix.

2



2.2 Methodology for the development of formal models for e-
services

In the context of modelling an appropriate abstraction level must be chosen, so
that a verification of the relevant security measures is still possible. In refine-
ments of the model, where a complete analysis is not possible for complexity
reasons, interesting parts of the search space can still be explored by manual
control using the simulation mode. Different models of possible attackers can
be included in the specification and the combined model can be explored to
find states where an attack succeeds.

The development of an executable formal model for an e-service application
requires the steps shown in figure 1.

to find vulnerabilities
complete analysis or simulation

additional security properties

e-service and attackers
combined models of 

specifications of attackers

formal specification of properties

under normal conditions and environment
verification of correct operation 

operational formal specification of e-service

redesign

redesign rethink

rethinkredesign

Figure 1: Development process for robust e-service models

Operational formal specification of the e-service
Derive an operational formal specification of the e-service from an informal
specification of the required functionality (for example an UML model).
Transfer the formal specification into the SH verification tool.
Note that specifications on different abstraction levels can be compared.

Formal specification of properties
System properties are explicitly given by break-conditions, temporal logic
formulae or Büchi-automata. Temporal logic formulae can be checked on
the abstract behaviour (under a simple homomorphism). A method for
checking approximate satisfaction of properties fits exacly to the built-in
simple homomorphism check [11].

3



Verification of correct operation under normal conditions and environment

• To find errors early in the analysis the check for given conditions
during the computation of the reachability graph is implemented.
Many safety properties (what happens is not wrong) can be checked
this way.

• Computation of strongly connected components is very fast [8] and
gives good insight into liveness behaviour (eventually something de-
sired happens) of the model.

• Model checking can be used to search for particular states describing
a violation of a security property.

Specifications of attackers
Adequate attackers 2 have to be specified here. But what kind of attacks
should be considered here ?
A number of threat classes from the X.509 standard that computer net-
works face are detailed in [13]. These threat classes are: Identity intercep-
tion, masquerade, replay, data interception, manipulation, repudiation,
denial of service, misrouting and traffic analysis.

Many of these threats can be avoided in a given application scenario by
choosing a decent cryptographic protocol for communication.

Aditional security properties
Security is not a single property of a protocol or an e-service. Depending
on precisely what capabilities an attacker has, different properties for the
system model have to be proven.

Combined models of e-service and attackers
The SH verification tool automatically “glues” together selected parts of e-
service model and attacker. This is supported by the project management
component of the tool.

Complete analysis or simulation to find vulnerabilities
If the attacker has too many alternatives the state space of the com-
position of the e-service specification and the attacker specification and
their complex interplay may become too big to compute the complete be-
haviour. So we additionally need to be able to inspect selected parts of
the state space. Simulation of typical paths of the reachability graph of
the formal model under development is very useful and can be compared
to the debugger used to develop software using standard programming

2Strong versus weak attacker:
A weak attacker might be able to start a replay attack, a very simple form of attack where
some sequence of events or commands is observed, and then replayed in the attempt to trick
the server to perform some action so that some vulnerability of the protocol can be exploited.
A strong attacker might be able to manipulate the power line on the infrastructure or start
some sort of denial of service attack to enforce a “reset” of an e-service. A very strong attacker
might even be able to reboot the server with a completely different operating system.

4



languages. If attack patterns are already known simulation of those at-
tacks in the extended formal model can clarify if the model resists this
threat.

3 Development of a model for the portal scenario

Looking at some typical configurations that we modelled for usage in e-government
applications we selected a typical example of an e-service implementation (called
portal scenario) to develop a formal model using the above presented method-
ology.

An APA model of the portal scenario (see figure 2) except the firewall was
implemented using the graphic editor of the SH verification tool. Domains of
state components and functions used are defined in textual form in the preamble
syntax of the tool.

Server1

User_Agent1

User_Agent2

(Angreifer)

FW

Portal

Server2

LAN

INTERNET

Figure 2: Portal scenario

3.1 Evaluation of portal scenario with attack simulation

A first version of portal scenario was entered into the SH verification tool to-
gether with the attacker model shown in figure 3. This is a weak attacker, it
has the ability to log into the e-service as a normal client and tries to get some
information sent to another client by just behaving like a normal client except
it is reading everything it can get.

5



pid2

LoginConf2

cid(command) = ’port’
uidc(command) = ’uid2’ &

Timeout2

command = (’uid2’,’timeout’,’none’)

Logout2

command:(’uid2’,’logout’,’none’)
state > 0,

c_port2

LoginReq2

command:(’uid2’,’login’,’pwd2’)

MessageSelector2

message:(’uid2’,’pwd2’,’q2a’)

m_port_seq

status2

ReceiveReply2

uid:uidr(message(mport))
mport:get_mport(mportseq,pid),
pstate(mport) = ’reply’,

<mportseq>

<portup(mportseq,par(command))>

<pid>

<’none’>

<pid>

<’none’>

<mportseq>

<portdown(mportseq,pid)>

<pid>

<pid>

<dont_care>

<par(command)>

<1>
<2>

<command>
<’none’>

<mportseq>
<portdown(mportseq,pid)>

<dont_care1>

<0> <command>

<’none’>

<state>
<0>

<’none’>

<command>

<’none’>
<command>

<mportseq>

<portquery(mportseq,pid,message)>

<0>
<1>

<2>

<3>

<mportseq>

<portup(mportseq,pid)>

<3>

<2>

Figure 3: APA specification of attacker

Figure 4 shows the graphical interface to the simulation component of the tool
during simulation of the portal model.

6



Figure 4: Graphical simulation using SH verification tool

After checking some properties about the correct behaviour without the at-
tacker, the attacker was added and the following security property was speci-
fied:

No data from the server database produced for one agent must be delivered to
another agent (the potential attacker).

Trying to verify this security property a sequence of 13 steps was found that
breaks the property and constitutes an attack (see figure 5).

This threat can be classified as misrouting. This is possible because it is as-
sumed that there is no end-to-end protocol between client and server but dif-
ferent protocols for client-portal and portal-server communication. Now some
problems with local management of routing information make the attack shown
here possible.

7



   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( LoginReq1  ( command = (uid1,login,pwd1) ) )

( CheckLogin  ( pid = pid2  command = (uid1,login,pwd1) ) )

( LoginConf1  ( command = (uid1,port,pid2) ) )

( Timeout  ( uid = uid1  pid = pid2 ) )

( MessageSelector1  ( message = (uid1,pwd1,q1a)  pid = pid2 ) )

( MessageConsumer1  ( message = (uid1,pwd1,q1a)  pid = pid2 ) )

( Timeout1  ( pid = pid2 ) )

( LoginReq2  ( command = (uid2,login,pwd2) ) )

( CheckLogin  ( pid = pid2  command = (uid2,login,pwd2) ) )

( LoginConf2  ( command = (uid2,port,pid2) ) )

( MessageSelector2  ( message = (uid2,pwd2,q2a)  pid = pid2 ) )

( ProduceReply1  ( reply = r1a  sstate = (pid2,uid1,q1a) ) )

( ReceiveReply2  ( uid = uid1  pid = pid2 ) )

Server1PortalAttackerClient1

Figure 5: Steps of successful attack

The integrated algorithms for computation of minimal automata [4] in the SH
verification tool can be used to compute the local behaviour of the agents, the
portal and the server (see figure 6).

A-1
start:

A-2

A-4 A-3( LoginConf2  () )

( MessageSelector2  () )
( Logout2  () ) (2)
( Timeout2  () )

( ReceiveReply2  () )

( Logout2  () ) (2)
( Timeout2  () )

( LoginReq2  () )

Figure 6: Local behaviour of attacker

8



On the basis of the computed graphs of the local behaviour of protocol agents
it can be checked whether the APA model at this level of abstraction fits to
the predefined behaviour of the protocol participants at another level given for
example by an UML model.

3.2 Portal scenario with cryptographic protocol

The portal scenario was enhanced by adding a cryptographical protocol (ab-
stracted) for client-portal communication and again possible attacks were searched.
Figure 7 shows an overview of the components. A situation where two servers
are computing answers for different queries, the portal has stored two different
keys for client-portal communications and client2 (the attacker) has posted a
query is shown.

P2: wait
P1: wait

query2

compute1

Server2

compute2

Server1

 
Blackbox

 
Portal

(Attacker)
Client2

 
Client1

P2 - key1
P1 - key2

Routing

control

control

control

control

query

reset

reset

reset

reset

query

answer

answer

query/state

answer/state

query/state

answer/state

encrypted Client2/Portal

encrypted Client1/Portal

not encrypted (LAN)

set state

change routes

read routes

internal actions

Figure 7: Portal scenario with cryptographic protocol

Figure 8 shows an APA specification of the enhanced portal component.

9



CheckApplication

rcmd: check_app(ac_seq,opt_user,par(dcmd))
opt_old_chanid: get_chanid(opt_user),
opt_user: getuser4key(user_seq,key),
dcmd: dec(key,cmd),
key: findkey(sslkeys,cmd),
new_chanid: firstchanid(freechanids),
key ~= ’wrong_key’ & cid(dcmd) = ’application’,

portal2client

client2portal

SSLKeys

m_port_seq

ResetPortal

CheckLogin

rcmd: checklogin(login_seq,user_seq,par(dcmd))
dcmd: dec(key,cmd),
key: findkey(sslkeys,cmd),
key ~= ’wrong_key’ & cid(dcmd) = ’login’,

CheckLogout

opt_chanid: get_chanid(opt_user)
opt_user: getuser4key(user_seq,key),
dcmd: dec(key,cmd),
key: findkey(sslkeys,cmd),
key ~= ’wrong_key’ & cid(dcmd) = ’logout’,

Timeout

rcmd: (’timeout’,’none’)
opt_chanid: chanidu(user),
key: keyu(user),
user: user_seq,
user ~= ::,

FreeChanids

PossibleUsers

ActiveUsers

ResetPortal

AccessControl

<mports>

<port_up(mports,par(rcmd),new_chanid,opt_old_chanid)>

<d_c>

<enc(key,rcmd)>

<cmd>

<’none’>

<d_c>

<enc(key,rcmd)>

<cmd>

<’none’>

<mports>

<port_down(mports,opt_chanid)>

<d_c4>

<iset((’chanid1’,’down’,’none’).(’chanid2’,’down’,’none’))>

<d_c1>

<::>

<d_c2>

<’chanid1’.’chanid2’>

<freechanids>

<add_chanid(opt_chanid,freechanids)>

<user_seq>

<sdelete(user,user_seq)>

<user_seq>

<add_login(key,uidl(par(dcmd)),par(rcmd),user_seq)>

<login_seq>

<1>

<user_seq>

<sdelete(opt_user,user_seq)>
<freechanids>

<add_chanid(opt_chanid,freechanids)>

<cmd>

<’none’>

<ac_seq>

<user_seq>

<add_app(opt_user,par(dcmd),par(rcmd),new_chanid,user_seq)>

<sslkeys>

<freechanids>

<upd_chan(new_chanid,opt_old_chanid,par(rcmd),freechanids)>

<d_c>

<enc(key,rcmd)>

Figure 8: APA specifying the portal component

Communication channels protected by strong cryptography make poor targets.
Attackers like to go after the programs at either end of a secure communications
link because the end points are typically easier to compromise or try to utilise
knowledge about faulty implementations of strong protocols or weak configu-
ration at one side. If a strong protocol is used but some guidelines to use the
protocol securely are not followed or some faulty implementation is used it is
possible to break even a strong protocol like SSLv3 [12]. For example an at-
tacker can try as a man-in-the-middle to downgrade a client/server pair to use
a weaker version of the protocol or a weaker crypto suite and then exploit the
known weaknesses.

In the enhanced portal scenario the attack described in section 3.1 was found
again but in this case data delivered to the attacker are encrypted (with key
of original receiver). So it seems that a weakened form of the given security
property is sufficient:

No data from the server database produced for one agent must be delivered to
another agent (the potential attacker) except encrypted data that the attacker
cannot decrypt.

Nevertheless another more complex attack was found in the given model. It is
a sequence of 21 steps including a reset of the portal and the cooperation of a
second server.

10



P2:
P1: 

Server2

compute1

Server1

 
Blackbox

 
Portal

(Attacker)
Client2

wait

Client1

 
 

Routing

control

control

control

control

query

reset

reset

reset

reset

query

answer

answer

query/state

answer/state

query/state

answer/state
set state

change routes

read routes

ResetPortal

Figure 9: Attack sequence (step 10)

Figure 9 shows a situation after the reset of the portal component where client1
has posted a query and is waiting for an answer, the portal has an empty routing
and crypto-key table and no state information and server1 is computing an
answer for the previous query of client1.

 
P1 - key2

Routing

wait

Client1

(Attacker)
Client2

 
Portal

 
Blackbox

Server1

compute2

Server2

reply1

P2:
P1: reply1

read routes

change routes

set state
answer/state

query/state

answer/state

query/state

answer

answer

query

reset

reset

reset

reset

query

control

control

control

control

encrypt

Figure 10: Attack sequence (step 21)

Figure 10 shows a follow-up situation after client2 has exchanged a key with
the portal, logged in, posted a query that server2 is processing. Now server1
has produced a reply to the previous query (before the reset) of client1 and the
portal assigns the wrong key from its routing table to this reply and directs the

11



blackbox to forward the encrypted reply to client2.

The vulnerability found here can also be seen as a race condition problem that
leads in the end to the misrouting effect. “Race conditions are just the most
security-relevant type of concurrency problem.”[14]

4 Implemented features to support the development
process of formal models

To implement support for the development process of formal models including
debugging and attack simulations the following features and modifications have
been implemented within the SH verification tool.

Visualisation of simulation paths on graphical presentation: Simple nav-
igation through simulation paths by mouse-clicks is implemented.

Different views: APA can be viewed on different levels to hide unnecessary
details.

Pattern based specification of components: Components of same type (for
example several servers or clients with same functionality) can be spec-
ified once and instantiated many times [5]. A parser and compiler for
pattern based specification have been implemented.

Invariants (break-conditions): To find errors early in the analysis, the check
for given conditions during the computation of the reachability graph is
implemented. So computation automatically stops if a state that matches
a given condition (violation of invariant) is found.

Project management: A very flexible selection of variants of analysis sce-
narios was implemented. In a project tree components can be selected
and deselected by mouse-click so it is easy for example to exchange li-
braries of symbolic crypto functions and analyse different versions and
combinations of formal models.
Remark about composition of components:
It would be desirable to be able to verify different components of the e-
service architecture separately and then combine the proofs to get less
state space explosion during the verification. In the analysed examples
however the functionality of the components is abstracted to a level where
all modelled functionality influences the behaviour at the interface of the
component, so it cannot (at least with our methods) be hidden somehow.

Split state components: Make it possible to insert an “intermediate layer”
of attackers in the specification without changing the specification of the
state components.

12



A feature found to be useful but not yet implemented is, to find out if attackers
have a winning strategy against the other components of the modelled system.
Alternating time temporal logic [3] would be useful for this purpose because
it offers selective quantification over those paths that are possible outcomes of
games, such as the game in which the system and the environment alternate
moves. Currently we only find that for example there is a state where some
invariant is broken, but not if attackers alone can enforce the whole system to
reach that state.

Related work
The Murphi verification system [1] for example is a similar finite-state analysis
tool but as far as we know it only implements fully automatic model checking
and has no interactive graphical simulation mode as described in this work.
For a comparison of an older version of the tool with other formal methods and
tools see [7].

5 Conclusions

This study shows that even if the correct behaviour of an e-service is proven
under assumptions about the interfaces to the environment and about reason-
able input it is necessary to inspect the system behaviour and ask “what if”
questions to check the behaviour of the model against given attack patterns or
slightly changed assumptions about the environment.

Therefore a tool that can be used as sort of debugger on formal models is
extremely helpful for the development process especially if the robustness of
the model against given attacks is to be inspected and verified. If new attack
methods are detected later it should be easy to check for vulnerabilities of the
model by adding an appropriate module or intercepting some protocol. The SH
verification tool with some additional features and modifications described in
section 4 has been successfully applied for that purpose.

We have applied a similar approach to formal modelling and verification of se-
curity policy interaction issues in the MakoSi project [2] where the e-service
modelled was an electronic whiteboard within a distributed collaborative engi-
neering environment.

We are working to improve the current approach in the following ways:

More example scenarios will be analysed to find and classify common attack
patterns that can be provided in standard libraries or example collections.

Features found to be useful during evaluation of new scenarios will be im-
plemented within the SH verification tool. It would be nice for example to
automatically find and check “similar” simulation paths when having changed
some details of the specified system.

13



If follow-up projects support it, possible new methods for example to reduce the
number of states that are explored when analysing the model or some theorem
proving assistance will be implemented.

Acknowledgements

I am grateful to the members of our research group META for previous work
on APA and fruitful discussions on the subject and especially to Jürgen Repp
for implementing most of the simulation support in the SH verification tool.

References

[1] http://verify.stanford.edu/dill/murphi.html.

[2] http://www.makosi.de.

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time tempo-
ral logic. In Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science, Florida, October 1997.

[4] S. Eilenberg. Automata, Languages and Machines, volume A. Academic
Press, New York, 1974.

[5] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and Prov-
ability - a Formal Framework. GMD Report 150, GMD – Forschungszen-
trum Informationstechnik GmbH, 2001.

[6] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and Prov-
ability - a Formal Framework. In Infrastructure Security Conference 2002,
October 2002. Copyright: c©2002, Springer Verlag.

[7] P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin,
A. Smith, U. Ultes-Nitsche, and B. Walters. Questions and answers about
ten formal methods. In Proc. 4th Int. Workshop on Formal Methods for
Industrial Critical Systems, volume II, pages 179–203, Pisa, Italy, July
1999. ERCIM, STAR/CNR.

[8] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, Reading, Mass., first
edition, 1979.

[9] P. Ochsenschläger, J. Repp, and R. Rieke. The SH-Verification Tool. In
Proc. 13th International FLorida Artificial Intelligence Research Society
Conference (FLAIRS-2000), pages 18–22, Orlando, FL, USA, May 2000.
AAAI Press.

14



[10] Peter Ochsenschläger, Jürgen Repp, and Roland Rieke. Abstraction and
composition – a verification method for co-operating systems. Journal
of Experimental and Theoretical Artificial Intelligence, 12:447–459, June
2000.

[11] Peter Ochsenschläger, Jürgen Repp, Roland Rieke, and Ulrich Nitsche. The
SH-Verification Tool Abstraction-Based Verification of Co-operating Sys-
tems. Formal Aspects of Computing, The International Journal of Formal
Method, 11:1–24, 1999.

[12] Eric Rescoria. SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, Boston, 2001.

[13] Danny Smith. Selected Aspects of Computer Security in Open Systems.
http://auscert.org.au/render.html?it=2255&cid=1920, The University of
Queensland, 1993.

[14] John Viega and Gary McGraw. Building Secure Software. Addison-Wesley
Professional Computer Series, Boston, 2002.

6 Appendix

A small example is used to illustrate how APA can be used to specify a system
and how to explore the computed reachability graph with the SH verification
tool. Let us assume we want to solve the following problem:

Given the puzzle in figure 11 construct an APA that computes all possible
positions reachable by shifting numbered squares to the empty square from the
initial state shown in figure 11 on the left and find out if the state on the right
is reachable.

6

3

5

8 7

4

1 2
?

6

3

54

1 2

7 8

Figure 11: Is it possible to change positions of the 8 and 7

The idea is to represent the actual state of the puzzle by 9 state components
corresponding to the 9 locations in the puzzle and to model the shifting of
a square by a state transition of an elementary automaton between each two
positions.

15



Each elementary automaton has the form given in figure 12. This graphical
representation shows an elementary automaton named A 1 2 with two neigh-
bour state components S1 and S2. The circles represent state components and
a box corresponds to one elementary automaton. The full specification of an
APA includes the transition relations of the elementary automata and the ini-
tial state. A state transition of automaton A 1 2 may only change the content
of directly connected state components S1 and S2 representing two neighbour
positions in the 8-puzzle example.

S2
A_1_2

x=’e’ | y=’e’
S1

<x>

<y>

<y>

<x>

Figure 12: The elementary automaton A 1 2

In this example x is bound to the content of S1 and y to the content of S2.
The inscription x = ’e’ | y = ’e’ in the box represents a restriction for the
possible transitions of A 1 2. If one of the state components contains the value
’e’ representing the empty square then the value of the other state component
can be moved to this state component and vice versa.

The whole APA for this example is given in figure 13. Note that the squares
with numbers are not part of the APA they just illustrate the initial state.

S1
A_1_2

x=’e’ | y=’e’
S2

A_2_3

x=’e’ | y=’e’
S3

S4
A_4_5

x=’e’ | y=’e’
S5

A_5_6

x=’e’ | y=’e’
S6

S7
A_7_8

x=’e’ | y=’e’
S8

A_8_9

x=’e’ | y=’e’
S9

A_1_4

x=’e’ | y=’e’

A_4_7

x=’e’ | y=’e’

A_2_5

x=’e’ | y=’e’

A_3_6

x=’e’ | y=’e’

A_6_9

x=’e’ | y=’e’
A_6_10

x=’e’ | y=’e’

321

6

’e’78

4

5

<y>

<x>

<y>

<x>

<y>

<x>

<x>

<y>
<x>

<y>
<x>

<y>

<y>

<x>

<x>

<y>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<x>

<y>

<x>

<y>

<y>

<x>

<y>

<x>

Figure 13: An APA with 12 elementary automata and 9 state components

16



Alternative behaviour is represented here by the asyncronicity of the possible
transitions of the elementary automata that are neighbours to the empty square.
For example in the initial position the automata labelled A 6 9 as well as A 8 9
can act. Both alternatives are evaluated by the tool. This situation can be
inspected by starting a simulation and visualising the alternatives by drawing
the node environment of the first node generated. Then on this drawn node
simulation can be continued by selecting some other node in the direction to
be inspected and compute and draw the environment of that node.

M-3

M-2

M-5

M-4

M-1 A_8_9 ( y = e  x = 7 ) 

A_6_9 ( y = e  x = 6 ) 

A_8_9 ( y = 7  x = e ) 

A_7_8 ( y = e  x = 8 ) 

A_6_10 ( y = e  x = 5 ) 

Figure 14: Simulation of 8-puzzle example

Note that there is a built-in check for equal states, in figure 14 the state following
M -2 when shifting the square with content 7 back to the original position is
identified with M -1.

One way to find out if the 8-puzzle has the property asked for in figure 11 is,
to run a complete analysis 3 of the example and then inspect the generated
reachability graph by search queries.

To find out if the state with changed positions of the 8 and 7 is reachable it is
sufficient to evaluate the following query that describes the searched state:

(S1:<1>) & (S2:<2>) & (S3:<3>) &

(S4:<4>) & (S5:<5>) & (S6:<6>) &

(S7:<7>) & (S8:<8>);

This query will find no states matching, that is you can never reach such a state
by using the given operations. q.e.d.

The example in figure 15 shows how the 8-puzzle problem can be modelled with
the descriptional complexity shifted from the graphical structure - a complex
graph of elementary automata - to a simple structure using only one elementary
automaton but complex data structures and preamble functions. It furthermore
illustrates how the choice-operator can be used instead of multiple asynchronous
elementary automata to model alternative behaviour.

3The complete analysis of this example takes about 2.5 hours on a P700 using the Lisp-
Version with compiler included. The reachability graph has 181440 different states. 483840
transitions are computed.

17



Position
Generate_Next_Position

next_position:possible_next_positions(position)

<position>

<next_position>

Figure 15: A different model of the 8-puzzle

Here one elementary automaton is used to compute the possible follow-up po-
sitions starting from the initial state. The whole puzzle is represented in a
data structure using a 9-tuple named Position, each tuple element represent-
ing one square. A complex preamble function possible next positions is used
to compute a sequence of the possible follow-up positions from a given position.

Alternative behaviour is represented here by the choice operator “:”, a special
syntactical form in the inscription of the elementary automaton. In this case
next position is set to one element chosen from the sequence generated by
possible next positions(position). The computation of the reachability graph
generates all possible choices at this point.

Note that this construct is often used in the modelling of agents in the proto-
col specification of e-services in the following sections. The agents have some
internal state and from that all possible follow-up states are computed. The
usage of the choice operator makes sure that all of them are explored.

18


